Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore...According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore, the permeability coefficient of the single fracture was obtained. In order to test the stability of the method, 500 simulations were conducted on each different fractal dimension. The simulated permeability coefficient was analyzed in probability density distribution and probability cumulative distribution statistics. Statistics showed that the discrete degree of the permeability coefficient increases with the increase of the fractal dimension. And the calculation result has better stability when the fractal dimension value is relatively small. According to the Bayes theory, the characteristic index of the permeability coefficient on fractal dimension P(Dfi| Ri) is established. The index, P(Dfi| Ri), shows that when the simulated permeability coefficient is relatively large, it can clearly represent the fractal dimension of the structure surface, the probability is 82%. The calculated results of the characteristic index verify the feasibility of the method.展开更多
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(CX2012B070) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(1343-76140000024) Supported by Academic New Artist Ministry of Education Doctoral Post Graduate in 2012,China
文摘According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore, the permeability coefficient of the single fracture was obtained. In order to test the stability of the method, 500 simulations were conducted on each different fractal dimension. The simulated permeability coefficient was analyzed in probability density distribution and probability cumulative distribution statistics. Statistics showed that the discrete degree of the permeability coefficient increases with the increase of the fractal dimension. And the calculation result has better stability when the fractal dimension value is relatively small. According to the Bayes theory, the characteristic index of the permeability coefficient on fractal dimension P(Dfi| Ri) is established. The index, P(Dfi| Ri), shows that when the simulated permeability coefficient is relatively large, it can clearly represent the fractal dimension of the structure surface, the probability is 82%. The calculated results of the characteristic index verify the feasibility of the method.