期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向小样本SAR图像自动目标识别的孪生自监督学习方法 被引量:4
1
作者 应自炉 王文琪 +1 位作者 徐颖 李文霸 《信号处理》 CSCD 北大核心 2023年第11期2080-2090,共11页
现有的自监督学习算法对小样本合成孔径雷达(Synthetic Aperture Radar,SAR)图像表征能力不足,无法充分地满足自动目标识别(Automatic Target Recognition,ATR)性能的需求。因此,本文提出了一种基于孪生自监督学习的SAR ATR方法。首先,... 现有的自监督学习算法对小样本合成孔径雷达(Synthetic Aperture Radar,SAR)图像表征能力不足,无法充分地满足自动目标识别(Automatic Target Recognition,ATR)性能的需求。因此,本文提出了一种基于孪生自监督学习的SAR ATR方法。首先,将无标注SAR数据通过孪生特征提取网络模块中的数据增强方式建立正负样本对;其次,通过孪生自监督学习模块中的对比学习头部网络和特征冗余降低头部网络,依据无监督对比学习损失函数和特征信息冗余损失函数进行联合优化,进而得到具有较好表征能力的预训练网络;最后,将自监督预训练网络权重加载到下游网络中,并通过交叉熵损失对下游网络进行小样本SAR图像有监督识别。实验结果表明,对于运动与静止目标获取和识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集,本文的方法仅在3.13%的训练数据上可达82.95%准确率。本文所提方法可在无标注数据中获得较好的表征能力,有效地改善小样本SAR图像识别的过拟合问题。 展开更多
关键词 合成孔径雷达 小样本图像识别 深度表征学习 孪生自监督学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部