期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
基于数字孪生及GA-BP神经网络的开关柜温升风险预测
1
作者 谢汶含 蒋永清 +2 位作者 孙大伟 王志伟 孙超 《中国安全生产科学技术》 北大核心 2025年第2期184-190,共7页
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜... 风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜触头温升,通过GA-BP神经网络对温升数据进行训练学习,实现触头温升异常风险预测。研究结果表明:数字孪生体可再现物理开关柜运行的全部温度数据,通过GA-BP网络模型预测开关柜温升风险平均绝对百分比误差为0.03%,可实现温升风险准确预测,避免开关柜因温升过高而导致热故障发生。 展开更多
关键词 开关柜 温升 风险预测 数字孪生 GA-BP神经网络
在线阅读 下载PDF
基于循环神经网络的棒束通道流动参数实时计算方法研究
2
作者 李翔宇 解衡 《原子能科学技术》 北大核心 2025年第7期1386-1396,共11页
针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以... 针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以RNN作为基本结构,利用多松弛时间-格子玻尔兹曼方法(multiple relaxation time-lattice Boltzmann method,MRT-LBM)构造RNN的计算单元,利用浸入法和特征线法确定神经元的结构和数量,并利用顶盖驱动流模型、5×5棒束通道仿真计算和PIV测量结果验证算法的有效性。计算结果表明,RNN在计算上述两个模型的无量纲化流速分布时,与MRT-LBM和商业CFD软件相比,残差约为0.1,残差较模型入口处的流速小1个数量级。RNN在计算棒束通道截面的无量纲化流速时,消耗的计算时间约为0.005~0.03 s,仅为MRT-LBM的1/6~1/3,且计算结果基本与PIV的测量结果相符合。同时RNN所有的计算过程都有物理方程对应,因此RNN可以在保证计算精度的前提下极大提升计算速度,且具有可解释性。RNN可为反应堆数字孪生系统提供实时模拟流动参数的计算方法,进一步提升数字孪生系统对现实环境的模拟能力。 展开更多
关键词 反应堆数字孪生系统 棒束通道 深度学习 循环神经网络 多松弛时间-格子玻尔兹曼方法
在线阅读 下载PDF
基于光纤传感航天器神经网络与数字孪生研究 被引量:1
3
作者 范丽 胡泽阳 +4 位作者 武丹 梁纪秋 胡夏芬 张芸山 谢久富 《仪表技术与传感器》 CSCD 北大核心 2024年第5期12-18,共7页
文中设计了一种掺杂Al_(2)O_(3)、Y_(2)O_(3)、P_(2)O_(5)的新型石英光纤,制作的光纤成品纤芯折射率类线性分布。通过飞秒激光直写技术,在光纤上刻写出光纤Bragg光栅,制作出光栅串。将多根光栅串布设在航天器卫星模型上,形成航天器智能... 文中设计了一种掺杂Al_(2)O_(3)、Y_(2)O_(3)、P_(2)O_(5)的新型石英光纤,制作的光纤成品纤芯折射率类线性分布。通过飞秒激光直写技术,在光纤上刻写出光纤Bragg光栅,制作出光栅串。将多根光栅串布设在航天器卫星模型上,形成航天器智能蒙皮,用于感知卫星结构损伤状态。基于上述测量数据,使用unity3D软件开发航天器的3D模型及相匹配的python程序对数据进行处理,实现航天器的数字孪生和状态感知。进一步通过模型建立和BP神经网络算法对传感数据进行感知训练,模型对撞击信号的预测准确率高达90%。 展开更多
关键词 光纤传感 数字孪生 飞秒激光光刻 智能感知 BP神经网络
在线阅读 下载PDF
基于孪生神经网络的楔形环连接结构预紧状态辨识
4
作者 盛俊杰 王九龙 +1 位作者 李树勇 文勇 《振动与冲击》 EI CSCD 北大核心 2024年第8期162-168,共7页
楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预... 楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预紧状态辨识方法。为提高模型训练效率和效果,首先利用时频处理技术进行孪生神经网络模型特征增强,基于增强特征建立了3层孪生神经网络分类模型,实现楔形环预紧状态宏观分类。同时,为指导楔形环精密装配,通过特征可视化技术,深入分析了孪生神经网络训练过程特征聚类效果,并基于二维特征建立了预紧状态定量表征模型,引入目标状态聚类中心与接受域参量,用于实现楔形环连接结构预紧状态定量评估。通过试验验证了所提方法的有效性,该方法可为楔形环连接结构定量辨识提供新的技术途径和思路,具有一定工程应用价值。 展开更多
关键词 楔形环连接结构 孪生神经网络 状态辨识 特征可视化 定量表征
在线阅读 下载PDF
基于孪生神经网络的Tor网络流关联方法 被引量:1
5
作者 孟玉飞 翟江涛 刘光杰 《计算机工程与设计》 北大核心 2024年第5期1321-1328,共8页
为进一步提升Tor(the onion router)网络流关联技术的准确率,减少时空开销以及增强容错性,提出一种基于孪生神经网络的Tor网络流关联方法。提取Tor网络流量的包间隔与包大小作为原始流量特征,利用孪生神经网络对特征进行关联性分析。通... 为进一步提升Tor(the onion router)网络流关联技术的准确率,减少时空开销以及增强容错性,提出一种基于孪生神经网络的Tor网络流关联方法。提取Tor网络流量的包间隔与包大小作为原始流量特征,利用孪生神经网络对特征进行关联性分析。通过孪生神经网络提取入口流与出口流的特征向量并进行相似度计算,根据阈值选择函数选择关联阈值判断流量是否关联。实验结果表明,所提方法关联准确率达到96.21%,误报率仅为0.1%,较现有方法准确率提升2.05%,误报率显著降低,进一步降低了关联成本。 展开更多
关键词 匿名通信 洋葱路由 流关联分析 孪生网络 深度学习 卷积神经网络 门控循环神经网络
在线阅读 下载PDF
融合孪生神经网络与互注意力的建筑物变化检测
6
作者 刘晨晨 葛小三 武永斌 《遥感信息》 CSCD 北大核心 2024年第5期70-77,共8页
针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注... 针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注意力网络用于双时相遥感影像特征的交互融合,引入多头注意力机制实现了全局信息的上下文建模,对高级语义特征进行细化分析,充分利用了遥感影像的多尺度信息。该方法在LEVIR-CD和WHU数据集上的变化检测结果均优于其他主流分割网络,能够有效改善大型建筑物的内部空洞和漏检错检现象。 展开更多
关键词 建筑物变化检测 孪生神经网络 多头注意力机制 MobileNetv2 深度学习
在线阅读 下载PDF
二阶段孪生图卷积神经网络推荐算法
7
作者 荆智文 张屿佳 +1 位作者 孙伯廷 郭浩 《计算机应用》 CSCD 北大核心 2024年第2期469-476,共8页
针对推荐系统中双塔型神经网络难以学习用户侧和商品侧交互信息以及图连接信息的问题,提出一种二阶段孪生卷积神经网络推荐算法(TSN)。首先,以用户行为构建异质图;然后,在双塔型神经网络之间设计图卷积孪生网络,从而在学习异质图连接信... 针对推荐系统中双塔型神经网络难以学习用户侧和商品侧交互信息以及图连接信息的问题,提出一种二阶段孪生卷积神经网络推荐算法(TSN)。首先,以用户行为构建异质图;然后,在双塔型神经网络之间设计图卷积孪生网络,从而在学习异质图连接信息的同时进行信息交互;最后,通过设计特殊结构的二阶段孪生信息共享机制,使得用户侧和商品侧的神经网络在训练过程中能够动态地、双向地传输信息,且有效避免神经网络串联。在基于MovieLens和豆瓣电影数据集的对比实验中,NDCG@10、NDCG@50、NDCG@100相较于最优基准算法DAT(Dual Augmented Two-tower model for online large-scale recommendation)提升了11.39%~23.98%。结果表明,所提算法能够缓解双塔型神经网络缺乏信息交互的问题,较对比算法推荐性能提升显著。 展开更多
关键词 推荐系统 双塔模型 孪生网络 深度学习 卷积神经网络
在线阅读 下载PDF
基于U-net神经网络的油浸式变压器绕组流-热耦合快速计算 被引量:4
8
作者 刘云鹏 高艺倩 +4 位作者 刘刚 胡万君 王文浩 王博闻 高成龙 《中国电机工程学报》 EI CSCD 北大核心 2024年第7期2897-2909,I0032,共14页
该文针对采用传统数值方法进行大型油浸变压器绕组温升仿真时间较长的问题,提出一种基于U-net神经网络训练的快速计算方法,可以迅速地预测变压器绕组温升及热点。首先,根据流热耦合原理筛选输入变量,并运用流热耦合方法计算不同工况下... 该文针对采用传统数值方法进行大型油浸变压器绕组温升仿真时间较长的问题,提出一种基于U-net神经网络训练的快速计算方法,可以迅速地预测变压器绕组温升及热点。首先,根据流热耦合原理筛选输入变量,并运用流热耦合方法计算不同工况下的输出结果,并将之制作成训练集和测试集。同时,详细讨论3个对网络训练影响最显著的超参数;其次,将归一化后的训练集输入U-net神经网络进行训练,并设置超参数最佳组合;最后,将预测集输入训练好的模型进行预测计算及反归一化操作,预测绕组热点与Fluent仿真结果相差仅0.44 K,单次仿真时间从200 s缩短为0.07 s。预测结果与实验温度平均误差最大为2.31 K,最小为0.98 K,预测方差为0.31左右。结果表明:该方法可用于快速获得油浸式变压器绕组的温度及热点,可满足变压器温度热点数字孪生的实时性仿真要求。 展开更多
关键词 U-net神经网络 流热耦合 绕组温升 快速计算 数字孪生
在线阅读 下载PDF
基于深度神经网络的目标跟踪算法综述 被引量:3
9
作者 郭凡 卢铉宇 +1 位作者 李嘉怡 王红梅 《航空兵器》 CSCD 北大核心 2024年第1期1-12,共12页
目标跟踪是根据视频序列中目标的前续信息,对目标的当前状态进行预测。深度学习在目标跟踪领域逐渐广泛应用,本文阐述了目标跟踪算法和深度学习的发展背景,对传统目标跟踪进行了回顾,根据不同的网络任务功能,将基于深度学习的目标跟踪... 目标跟踪是根据视频序列中目标的前续信息,对目标的当前状态进行预测。深度学习在目标跟踪领域逐渐广泛应用,本文阐述了目标跟踪算法和深度学习的发展背景,对传统目标跟踪进行了回顾,根据不同的网络任务功能,将基于深度学习的目标跟踪算法分为:基于分类的深度学习目标跟踪算法、基于回归的深度学习目标跟踪算法、基于回归与分类结合的目标跟踪算法,并选取了具有代表性的目标跟踪算法进行实验,对比不同算法之间的特点;最后对目前基于深度学习的目标跟踪方法存在的问题进行分析,对未来发展方向进行展望。实验结果证明,深度孪生跟踪网络在精度与速度上均占优,成为当前主流的跟踪算法框架。 展开更多
关键词 目标跟踪 深度学习 神经网络 卷积神经网络 孪生神经网络 生成对抗网络
在线阅读 下载PDF
基于数字孪生的优化概率神经网络变压器故障诊断 被引量:22
10
作者 王妍 张太华 《组合机床与自动化加工技术》 北大核心 2020年第11期20-23,共4页
针对油浸式电力变压器无法实时监测其运行情况、故障诊断精度低、速度慢等问题,提出一种基于数字孪生技术的优化概率神经网络的故障诊断方法。首先,根据变压器结构、运行等特点建立基于数字孪生的故障诊断模型,采用差分进化算法优化概... 针对油浸式电力变压器无法实时监测其运行情况、故障诊断精度低、速度慢等问题,提出一种基于数字孪生技术的优化概率神经网络的故障诊断方法。首先,根据变压器结构、运行等特点建立基于数字孪生的故障诊断模型,采用差分进化算法优化概率神经网络(PNN)中的平滑因子,再将优化后的平滑因子赋给PNN,最终得到优化后的故障诊断模型,进而构建高精度变压器数字孪生体进行实时故障诊断分析。优化结果表明,与优化前以及RBF和BP网络相比,变压器故障诊断的精度明显提高且收敛速度快,基于数字孪生技术能够实现实时诊断变压器故障。 展开更多
关键词 数字孪生 变压器故障诊断 概率神经网络 差分进化算法
在线阅读 下载PDF
基于U-net神经网络的35 kV油浸式变压器绕组温度快速计算 被引量:8
11
作者 刘云鹏 高艺倩 +2 位作者 刘刚 寇家俊 李欢 《高电压技术》 EI CAS CSCD 北大核心 2024年第6期2716-2725,共10页
针对采用传统数值方法进行油浸变压器绕组温升仿真时间较长的问题,提出了一种基于U-net神经网络训练的快速计算方法,以迅速地获得变压器绕组温升。针对1台35 kV油浸式变压器,利用Fluent软件生成了不同工况下深度学习所需的训练集,在确... 针对采用传统数值方法进行油浸变压器绕组温升仿真时间较长的问题,提出了一种基于U-net神经网络训练的快速计算方法,以迅速地获得变压器绕组温升。针对1台35 kV油浸式变压器,利用Fluent软件生成了不同工况下深度学习所需的训练集,在确定超参数的最佳组合后,变压器温度场的计算效率得到显著提高,最后建立光纤试验测温平台对算法的有效性进行了验证。以Fluent软件得到的结果为参考,B相低压绕组内外侧和高压绕组内侧U-net神经网络的相对误差在0.24%、0.21%和0.39%左右,单次计算时间从10854s缩短到0.05s,且预测结果与试验温度平均误差最大为4℃,最小为2℃。研究结果表明,该方法可用于快速获得油浸式变压器绕组的温度,可以满足油浸式变压器温度及热点数字孪生技术的实时性仿真要求。 展开更多
关键词 U-net神经网络 变压器绕组温升 深度学习 快速计算 数字孪生
在线阅读 下载PDF
基于多尺度细节的孪生卷积神经网络图像融合算法 被引量:7
12
作者 刘博 韩广良 罗惠元 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1283-1293,共11页
图像融合将来自不同捕获条件或不同传感器的互补图像进行融合以提高图像的视觉质量。针对这一任务,本文提出一种改进的滚动引导滤波与神经网络相结合的多尺度融合算法。首先,使用孪生卷积神经网络学习图像特征,并以此获得包含源图像显... 图像融合将来自不同捕获条件或不同传感器的互补图像进行融合以提高图像的视觉质量。针对这一任务,本文提出一种改进的滚动引导滤波与神经网络相结合的多尺度融合算法。首先,使用孪生卷积神经网络学习图像特征,并以此获得包含源图像显著特征的权值映射图。随后,使用改进的滚动引导滤波对图像进行多尺度分解,结合信息熵使滚动引导滤波权重参数自适应化来实现多尺度自适应分解,并结合非线性映射增强图像细节信息。最后,采用局部能量与权值图相结合的自适应调整融合模式对多尺度图像进行融合。经实验对比,所提方法能够避免出现图像边缘圆晕效应,且能够更好地突出图像边缘、细节纹理特征。另外,与其他算法相比,本文所提出的算法在平均梯度、信息熵、视觉信息保真度以及空间频率等客观评价指标项上均取得了更优的性能表现。 展开更多
关键词 图像处理 孪生卷积神经网络 图像融合 滚动引导滤波 多尺度图像
在线阅读 下载PDF
一种用动态神经网络的月面科研站电源系统分析方法
13
作者 黄宇超 宋相毅 +1 位作者 童乔凌 张侨 《电源技术》 CAS 北大核心 2024年第3期395-400,共6页
月面科研站能源系统工况复杂,对其电源系统的稳定性分析十分重要,电源系统建模复杂,将其等效为黑箱子模型,通过输入和输出特性判断稳定性。提出了一种利用动态神经网络根据给定输入估计系统的预测输出,判断系统的稳定性。神经网络模型... 月面科研站能源系统工况复杂,对其电源系统的稳定性分析十分重要,电源系统建模复杂,将其等效为黑箱子模型,通过输入和输出特性判断稳定性。提出了一种利用动态神经网络根据给定输入估计系统的预测输出,判断系统的稳定性。神经网络模型的训练数据集通过仿真生成,通过选择合适的神经网络结构和超参数,获得最佳的传递函数辨识结果。以Buck电路为例,采用MATLAB的Simulink模块进行仿真得到神经网络训练集,神经网络预测输出能贴近仿真输出,验证了该方法的有效性。 展开更多
关键词 动态神经网络 电源系统 数字孪生 BUCK变换器
在线阅读 下载PDF
引入感知模型的改进孪生卷积神经网络实现人脸识别算法研究 被引量:18
14
作者 徐先峰 张丽 +1 位作者 郎彬 夏振 《电子学报》 EI CAS CSCD 北大核心 2020年第4期643-647,共5页
针对非限定性条件下人脸识别困难问题,设计了一种引入感知模型的改进孪生卷积神经网络结构(Inception Module Incorporated Siamese Convolutional Neural Networks,IMISCNN),在充分利用孪生结构有效减少外界干扰并避免过拟合等优点的... 针对非限定性条件下人脸识别困难问题,设计了一种引入感知模型的改进孪生卷积神经网络结构(Inception Module Incorporated Siamese Convolutional Neural Networks,IMISCNN),在充分利用孪生结构有效减少外界干扰并避免过拟合等优点的基础上,为其增加感知模型实现更丰富特征的提取.为寻找最优学习率引入了循环学习率策略,加速模型收敛.在CASIA-webface和Extended Yale B标准人脸数据库上的仿真实验表明,所提IMISCNN算法提升了人脸识别精度. 展开更多
关键词 人脸识别 孪生卷积神经网络 感知模型 循环学习率
在线阅读 下载PDF
基于孪生神经网络的行文一致性测评研究 被引量:2
15
作者 刘杰 张文轩 +2 位作者 李亚光 张逸超 周建设 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第6期649-657,共9页
针对目前的篇章级行文一致性度量模型只考虑了待测作文的全文行文一致性,无法捕捉文本语义块的隐含语义特征及其之间的一致性问题,提出了一种通用的作文行文一致性测评模型.该模型借鉴孪生神经网络的思想,创新性地同时提取作文中核心人... 针对目前的篇章级行文一致性度量模型只考虑了待测作文的全文行文一致性,无法捕捉文本语义块的隐含语义特征及其之间的一致性问题,提出了一种通用的作文行文一致性测评模型.该模型借鉴孪生神经网络的思想,创新性地同时提取作文中核心人物的性格、形象特征以及故事情节特征并进行相似度度量,从而获取文本的中心思想以及行文一致性的匹配分数;使用无监督主题模型Biterm-LDA(Latent Dirichlet Allocation)对作文进行主题特征提取,解决了对手工标注的依赖。实验结果表明提出的模型评分与人工标注结果多数一致,且优于普通神经网络模型. 展开更多
关键词 作文测评 作文自动评分 行文一致性 孪生神经网络
在线阅读 下载PDF
基于差分孪生卷积神经网络的大规模不平衡数据分类算法 被引量:7
16
作者 任佳丽 王文晶 《计算机应用与软件》 北大核心 2019年第11期267-274,共8页
传统基于支持向量机的不平衡数据分类算法包含矩阵运算,无法应用于大规模的不平衡数据集.针对这种情况,提出基于差分孪生卷积神经网络的大规模不平衡数据分类算法.设计差分卷积机制增强卷积神经网络的深度结构表示能力,在不改变滤波器... 传统基于支持向量机的不平衡数据分类算法包含矩阵运算,无法应用于大规模的不平衡数据集.针对这种情况,提出基于差分孪生卷积神经网络的大规模不平衡数据分类算法.设计差分卷积机制增强卷积神经网络的深度结构表示能力,在不改变滤波器数量的情况下提高模型的判别能力.通过差分孪生卷积神经网络分别优化每个类的特征图,每个类关联多个超平面,根据输入样本与超平面的距离决定输出样本的类标签.基于多组不平衡数据集的实验结果表明,该算法实现了较好的分类性能. 展开更多
关键词 深度学习 数据分类 不平衡数据集 卷积神经网络 深度神经网络 孪生神经网络
在线阅读 下载PDF
基于卷积神经网络的车载数字孪生持续认证方案 被引量:1
17
作者 赖成喆 张鑫伟 +1 位作者 李冠颉 郑东 《通信学报》 EI CSCD 北大核心 2023年第11期151-160,共10页
为了解决无人驾驶通信过程中存在的车辆身份合法性问题,提出了一种基于卷积神经网络(CNN)的车载数字孪生持续认证方案进行车辆身份合法性验证。具体来说,数字孪生获取车辆传感器收集的数据,用于训练部署在数字孪生上的CNN,然后执行主成... 为了解决无人驾驶通信过程中存在的车辆身份合法性问题,提出了一种基于卷积神经网络(CNN)的车载数字孪生持续认证方案进行车辆身份合法性验证。具体来说,数字孪生获取车辆传感器收集的数据,用于训练部署在数字孪生上的CNN,然后执行主成分分析为分类器选择合适的典型特征。利用CNN提取的特征,在注册阶段训练一类支持向量机(OC-SVM)分类器,在认证阶段进行数据分类,进而将当前车辆验证为合法或者恶意车辆。仿真结果表明,所提方案在性能和准确率方面优势突出并优于现有方案。 展开更多
关键词 无人驾驶 车载数字孪生 卷积神经网络 持续认证 分类器
在线阅读 下载PDF
旋转区域提议网络的孪生神经网络跟踪算法 被引量:3
18
作者 姜文涛 崔江磊 《计算机工程与应用》 CSCD 北大核心 2022年第24期247-255,共9页
孪生区域提议网络跟踪算法是一种高效的目标跟踪算法,通过锚框规避了图像金字塔对跟踪性能带来的影响,但这种跟踪方法受制于区域提议网络本身的局限性,在目标旋转时,跟踪精度将受到较大损失。而其他对旋转鲁棒性较高的方法则因为使用了... 孪生区域提议网络跟踪算法是一种高效的目标跟踪算法,通过锚框规避了图像金字塔对跟踪性能带来的影响,但这种跟踪方法受制于区域提议网络本身的局限性,在目标旋转时,跟踪精度将受到较大损失。而其他对旋转鲁棒性较高的方法则因为使用了复杂的旋转结构,导致算法的跟踪速度大幅下降。为了解决旋转目标对区域提议网络跟踪精度的影响,提出了旋转区域提议网络的孪生神经网络跟踪算法,通过AO-RPN(arbitrary-oriented region proposal network)结构将旋转与区域提议网络相统一,引入角度预测分支,在目标跟踪的过程中,直接对旋转的目标进行搜索,并得到最小外接矩形。该方法在保持较高跟踪速度的同时,精度超过了对目标进行旋转采样或使用局部特征进行跟踪的算法。通过在数据集OTB2015、VOT2016和VOT2018上进行的大量实验。结果表明,该算法在遮挡、形变、光照等多种复杂情况下表现出了较强的鲁棒性和适应性。 展开更多
关键词 目标跟踪 特征融合 旋转锚框 区域提议网络 孪生神经网络
在线阅读 下载PDF
孪生神经网络在抽油系统故障诊断中的应用 被引量:1
19
作者 温后珍 王浩宇 +2 位作者 栾仪广 于双锴 陈德斌 《石油机械》 北大核心 2023年第11期20-26,60,共8页
人工智能诊断技术可在不同的数据和环境下进行自适应,从而大大提高故障诊断效率。由此提出了一种智能故障诊断方法,用于油田抽油系统的故障检测。现有的方法多采用神经网络技术,通过分析油井示功图来实现诊断。然而,实际采集到的油井示... 人工智能诊断技术可在不同的数据和环境下进行自适应,从而大大提高故障诊断效率。由此提出了一种智能故障诊断方法,用于油田抽油系统的故障检测。现有的方法多采用神经网络技术,通过分析油井示功图来实现诊断。然而,实际采集到的油井示功图数据非常有限且类别不平衡,导致深度卷积神经网络容易出现过拟合。为了解决这个问题,提出采用预训练孪生神经网络方法。在一个较大的数据集上训练一个比较模型,用于判断图像之间的相似度。这个模型能够输出不同图片之间的相似度。利用预训练好的模型,在功图识别任务上进行微调,通过提取和融合2张图片的特征向量,输出它们之间的相似度。研究结果表明,预训练孪生网络模型能够很好地解决小样本问题,特别适用于功图识别这类任务。试验结果显示,该方法在小样本量功图识别任务上表现出色,具有高精度的故障诊断能力,满足抽油系统智能故障诊断要求。预训练孪生网络模型在小样本量功图识别任务上表现良好,为油田抽油系统的智能故障诊断提供了有效的解决方案。 展开更多
关键词 抽油系统 孪生神经网络 示功图 故障诊断 预训练 小样本
在线阅读 下载PDF
基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究 被引量:19
20
作者 经海翔 黄友锐 +1 位作者 徐善永 唐超礼 《工矿自动化》 北大核心 2021年第11期53-60,共8页
针对当前矿用通风机故障诊断方法存在预测性较差、准确率较低的问题,提出了一种基于数字孪生和概率神经网络(PNN)的矿用通风机预测性故障诊断方法。利用Unity3D、3dsMax、SciFEA等搭建通风机的数字孪生模型,模拟出真实通风机的结构特点... 针对当前矿用通风机故障诊断方法存在预测性较差、准确率较低的问题,提出了一种基于数字孪生和概率神经网络(PNN)的矿用通风机预测性故障诊断方法。利用Unity3D、3dsMax、SciFEA等搭建通风机的数字孪生模型,模拟出真实通风机的结构特点、物理属性和运行规则,利用PREspective与通风机的PLC实时通信,将通风机的运行状态实时映射至数字孪生模型中;以通风机的数字孪生模型为基础,结合专家知识、机器学习、历史数据等构建了通风机预测性故障诊断模型,通过分析通风机的实时数据与运行状态之间的关系,不断学习并更新模型参数;采用改进的鲸鱼优化算法(IWOA)通过包围猎物、捕食猎物和搜索猎物的生物行为求取平滑因子最优值并赋予PNN,利用优化后的PNN对通风机进行预测性故障诊断,对比通风机预测性故障诊断模型判断结果与实际情况是否相符,若诊断错误,则需要对预测性故障诊断模型中的参数进行修正,直到故障判断准确。实验结果表明,与遗传算法(GA)、粒子群算法(PSO)、鲸鱼优化算法(WOA)优化后的PNN故障诊断精度相比,IWOA优化后的PNN故障诊断精度达97.5%,说明基于数字孪生和PNN的矿用通风机预测性故障诊断方法可以满足通风机故障诊断的实时性与准确性要求。 展开更多
关键词 矿用通风机 预测性故障诊断 智能诊断 数字孪生 鲸鱼优化算法概率神经网络
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部