期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于特征加权混合隶属度的模糊孪生支持向量机 被引量:1
1
作者 吕思雨 赵嘉 +2 位作者 吴烈阳 张翼英 韩龙哲 《南昌工程学院学报》 CAS 2024年第1期93-101,118,共10页
模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对... 模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对以上问题,提出了一种基于特征加权混合隶属度的FM-FTSVM。首先计算每个特征的信息增益,并依据信息增益值的大小为特征赋予权重,降低不相关或弱相关特征的作用,使其能更好地应用于高维数据分类;然后,为每一类样本构造一个最小包围球计算基于紧密度的特征加权隶属度,并结合基于距离的特征加权隶属度得到特征加权混合隶属度,综合考虑样本点到类中心的特征加权欧式距离和样本间的紧密程度,可更好识别离群点或噪声数据;最后,融合特征加权核函数,降低不相关特征对核函数或距离计算产生的影响。与对比算法在人工数据集、高维数据集和UCI数据集上进行比较,发现本文提出的方法在区分离群点、噪声和有效样本上有明显优势,且在高维数据集上可获得更好分类效果。 展开更多
关键词 模糊孪生支持向量 特征加权 信息增益 紧密度 隶属度 高维数据
在线阅读 下载PDF
基于混合孪生支持向量机的径流区间预测 被引量:1
2
作者 冯仲恺 付新月 +4 位作者 纪国良 刘亚新 牛文静 黄海燕 杨涛 《人民长江》 北大核心 2024年第4期95-102,117,共9页
径流具有非线性和随机性特征,单一点预测模型难以精确刻画和描述径流演化过程。为此,提出了一种可有效量化径流波动范围的智能区间预测方法。首先采用自适应噪声完备集合经验模态分解将非线性径流序列划分为若干子序列,并采用样本熵方... 径流具有非线性和随机性特征,单一点预测模型难以精确刻画和描述径流演化过程。为此,提出了一种可有效量化径流波动范围的智能区间预测方法。首先采用自适应噪声完备集合经验模态分解将非线性径流序列划分为若干子序列,并采用样本熵方法重构得到修正序列;其次以孪生支持向量机为基础,分别对复杂度较高的子序列构建区间预测模型、复杂度较低的子序列建立点预测模型,同时采用鲸鱼优化方法寻求满意的模型参数组合;最后将各子模型的预测结果叠加得到最终的预测区间。结果表明:所提方法具有良好的稳健性和可靠性,在点预测、区间预测等不同场景、不同预见期的性能指标均优于对比模型;如预见期为3 d时,对于黄河流域唐乃亥水文站,所得预测区间具有较高的可靠度与清晰度,其预测区间覆盖率PICP值为98.30%,预测区间平均宽度PINAW值为0.0792,可靠度、清晰度分别平均提高了9.47%和32.66%。研究成果可为智能化径流预测提供行之有效的方法。 展开更多
关键词 径流预测 孪生支持向量 自适应噪声完备集合经验模态分解 鲸鱼优化方法 黄河流域
在线阅读 下载PDF
一种改进的最小二乘孪生支持向量机分类算法 被引量:21
3
作者 储茂祥 王安娜 巩荣芬 《电子学报》 EI CAS CSCD 北大核心 2014年第5期998-1003,共6页
提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实... 提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实现结构风险最小化和避免在求解该目标函数时可能对病态矩阵求逆的处理.同时,提出了利用一种指数函数计算训练样本的密度来获得样本权重值的算法.该算法能够有效缩减计算权重的时间,且具有较强的鲁棒性.实验证明本文提出的广泛权重的最小二乘孪生支持向量机能够实现高精度和高效率的分类效果,而且特别适合于含有交叉噪声样本的数据集分类. 展开更多
关键词 模式分类 最小二乘 孪生支持向量 权重 指数函数
在线阅读 下载PDF
结合HJ卫星影像和最小二乘孪生支持向量机的小麦蚜虫遥感监测 被引量:7
4
作者 胡根生 吴问天 +3 位作者 罗菊花 黄文江 梁栋 黄林生 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2017年第2期211-219,共9页
为了准确、及时地监测小麦蚜虫发生情况,利用野外定位调查数据及环境与灾害监测预报小卫星星座HJCCD和HJ-IRS影像数据,在北京市通州区和顺义区小麦蚜虫发生的关键生育期(灌浆期),提取对蚜虫病情影响较大的小麦长势因子和生境因子,利用... 为了准确、及时地监测小麦蚜虫发生情况,利用野外定位调查数据及环境与灾害监测预报小卫星星座HJCCD和HJ-IRS影像数据,在北京市通州区和顺义区小麦蚜虫发生的关键生育期(灌浆期),提取对蚜虫病情影响较大的小麦长势因子和生境因子,利用最小二乘孪生支持向量机建立该研究区的小麦蚜虫监测模型,并与传统支持向量机、费歇尔线性判别分析和学习矢量量化神经网络模型的监测结果进行对比。结果表明:最小二乘孪生支持向量机模型的总体监测精度达到86.4%,优于传统支持向量机模型(77.3%)、费歇尔线性判别分析模型(77.3%)和学习矢量量化神经网络模型(72.7%),取得了较好的监测效果。 展开更多
关键词 卫星影像 遥感监测 小麦蚜虫 最小二乘孪生支持向量
在线阅读 下载PDF
改进的投影孪生支持向量机 被引量:10
5
作者 陈素根 吴小俊 《电子学报》 EI CAS CSCD 北大核心 2017年第2期408-416,共9页
针对投影孪生支持向量机(Projection Twin Support VectorMachine,PTSVM)在训练和求解过程中存在的问题,提出了一类改进的投影孪生支持向量机(Improved PTSVM),简称为IPTSVM.该文首先构造了改进的线性投影孪生支持向量机,然后利用核技... 针对投影孪生支持向量机(Projection Twin Support VectorMachine,PTSVM)在训练和求解过程中存在的问题,提出了一类改进的投影孪生支持向量机(Improved PTSVM),简称为IPTSVM.该文首先构造了改进的线性投影孪生支持向量机,然后利用核技巧轻松将其推广到了非线性形式.本文的主要贡献有:(1)提出了投影孪生支持向量机的新模型,克服了原始PTSVM在训练之前需要求解两个逆矩阵的问题;(2)继承了传统SVM(Support VectorMachine)的精髓,利用核技巧直接将线性IPTSVM推广到非线性形式;(3)引入了一个新的参数,可以调节模型的性能,提高了IPTSVM的分类精度.实验结果表明,与PTSVM算法相比较,IPTSVM不仅提高了分类精度,而且克服了PTSVM的一些不足. 展开更多
关键词 支持向量 非平行平面支持向量 投影孪生支持向量 模式分类
在线阅读 下载PDF
孪生支持向量回归机研究进展 被引量:2
6
作者 丁世飞 张子晨 +2 位作者 郭丽丽 张健 徐晓 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1117-1134,共18页
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练... 孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个加权系数,给予不同位置的训练样本不同程度的惩罚.(2)拉格朗日孪生支持向量回归机由于孪生支持向量回归机的对偶问题中半正定矩阵的逆矩阵可能不存在,若存在,则对偶问题不是严格凸函数,可能存在多个解,因此考虑使用松弛变量的2范数代替原有的1范数,使对偶问题更简单,易于求解.(3)最小二乘孪生支持向量回归机由于孪生支持向量回归机的求解需要在对偶空间进行,得到的解为近似解,考虑通过最小二乘法将原问题的不等式约束转化为等式约束,使得原问题可以在原空间内求解,在很大程度上降低计算时间,提高泛化性能,且不损失精度.(4)v-孪生支持向量回归机通过引入一组参数v1与v2自动调节ε1与ε2的值以控制训练样本的特定部分对两条回归超平面所能造成的最大误差,从而自适应给定数据的结构,提高孪生支持向量回归机的拟合精度.(5)ε-孪生支持向量回归机在孪生支持向量回归机的原问题中引入正则化项以达到结构风险最小化的目的,使对偶问题转化为稳定的正定二次规划问题,并通过SOR求解对偶问题,加快训练速度.(6)孪生参数不敏感支持向量回归机克服参数的选取对孪生支持向量回归机超平面构造的影响,使算法非常适合于存在异方差噪声数据的数据集,训练速度和泛化性能也有提升.本文同时对以上算法的数学模型、改进算法及应用进行了系统地分析与总结,给出了以上算法在9个UCI基准数据集上的回归性能与计算时间,并在模型结构层面逐一分析每个算法的表现与耗时的根本原因.对于其他不便于归类的孪生支持向量回归机改进算法及应用,本文也对其作逐一总结.整体来看,最小二乘孪生支持向量回归机在性能和计算时间方面表现最佳,拉格朗日孪生支持向量回归机、v-孪生支持向量回归机的性能并列次优且计算时间接近,加权孪生支持向量回归机、ε-孪生支持向量回归机和孪生参数不敏感支持向量回归机的性能不理想,但计算时间接近.本文旨在使读者对孪生支持向量回归机的不同改进算法之间的异同点与优缺点产生更深刻的理解与认识,从而将更多优秀的改进策略应用于孪生支持向量回归机,最终为进一步提高孪生支持向量回归机的性能以及扩展孪生支持向量回归机的应用范围提供较为清晰的思路. 展开更多
关键词 孪生支持向量回归 拟合精度 泛化能力 计算时间
在线阅读 下载PDF
基于改进孪生支持向量机的热电厂脱硫系统pH值预测 被引量:3
7
作者 程换新 黄震 骆晓玲 《青岛科技大学学报(自然科学版)》 CAS 2019年第5期101-106,共6页
在热电厂脱硫过程中,pH值直接影响脱硫的效率,若pH测量仪器受到环境的影响被破坏,会给生产造成巨大的损失。为了降低这种损失,采用改进的孪生支持向量机回归模型对pH值进行预测,首先将粒子群算法的权值和学习因子进行改进,然后用改进之... 在热电厂脱硫过程中,pH值直接影响脱硫的效率,若pH测量仪器受到环境的影响被破坏,会给生产造成巨大的损失。为了降低这种损失,采用改进的孪生支持向量机回归模型对pH值进行预测,首先将粒子群算法的权值和学习因子进行改进,然后用改进之后的粒子群算法对孪生支持向量机回归模型的惩罚参数和核函数的参数等进行寻优,再将最优的参数代入孪生支持向量机预测模型中,最后用MATLAB工具箱对pH值历史数据进行仿真,并与未改进的孪生支持向量机和BP神经网络预测技术进行比较。结果表明:该方法对脱硫系统中pH值的预测精度高,平均相对误差比未改进的孪生支持向量机和BP神经网络的预测结果小,能够显著改善脱硫装置的效率。 展开更多
关键词 粒子群算法 孪生支持向量 BP神经网络 PH值
在线阅读 下载PDF
光滑孪生参数化不敏感支持向量回归机 被引量:1
8
作者 黄华娟 韦修喜 周永权 《郑州大学学报(工学版)》 CAS 北大核心 2022年第2期28-34,共7页
作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转... 作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转化对偶问题的方法求解2个带有不等式约束的二次规划问题,然而这种求解二次规划问题的方法对于样本数目较大的问题将受到时间和内存的制约,这是导致TPISVR训练效率低的关键所在。针对此问题,首先,引入正号函数,将TPISVR的2个二次规划问题转化为2个不可微的无约束优化问题;其次,引入CHKS光滑函数和正则项,对TPISVR模型进行正则化,并对不可微的无约束优化问题进行光滑逼近,从而将不可微的模型转化为可微的无约束优化问题,并用收敛速度快的Newton-Armijo方法求解新模型,提出光滑孪生参数化不敏感支持向量回归机(STPISVR);最后,从理论上证明了STPISVR模型是收敛的,并具有任意阶光滑性。为了验证所提算法的有效性和可行性,对机器学习常用的人工数据集和UCI数据集进行仿真实验。实验结果表明:和其他机器学习方法相比,STPISVR在保证精度不下降的前提下,获得了更高的训练效率。 展开更多
关键词 孪生参数化不敏感支持向量回归 光滑技术 异方差噪声 NEWTON法 训练效率
在线阅读 下载PDF
孪生支持向量机在滚动轴承振动故障诊断中的应用 被引量:2
9
作者 徐凯 《煤矿机械》 2016年第4期147-150,共4页
通过对滚动轴承振动信号进行定量分析,从振动故障信号中提取与故障诊断方法有关的故障特征,在传统支持向量机的基础上,研究孪生支持向量机的建模方法,建立基于孪生支持向量机的滚动轴承振动故障诊断模型,并结合粒子群优化算法对故障诊... 通过对滚动轴承振动信号进行定量分析,从振动故障信号中提取与故障诊断方法有关的故障特征,在传统支持向量机的基础上,研究孪生支持向量机的建模方法,建立基于孪生支持向量机的滚动轴承振动故障诊断模型,并结合粒子群优化算法对故障诊断模型的关键参数进行寻优,从而得到最佳的故障诊断模型。仿真结果表明,将孪生支持向量机建模方法应用于滚动轴承振动故障诊断中,能够取得较好的诊断效果和诊断效率,结合粒子群优化算法进一步提高了故障诊断模型的分类准确率,为滚动轴承的振动故障诊断提供了可行有效的思路。 展开更多
关键词 滚动轴承 故障诊断 孪生支持向量 粒子群
在线阅读 下载PDF
鲁棒的加权孪生支持向量机
10
作者 花小朋 丁世飞 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2074-2080,共7页
基于局部信息的加权孪生支持向量机(WLTSVM)借用类内及类间近邻图分别表示类内样本的紧凑性和类间样本的分散性,克服孪生支持向量机(TWSVM)欠考虑训练样本间相似性的缺陷,并且在一定程度上降低二次规划求解的计算复杂度。然而,WLTSVM仍... 基于局部信息的加权孪生支持向量机(WLTSVM)借用类内及类间近邻图分别表示类内样本的紧凑性和类间样本的分散性,克服孪生支持向量机(TWSVM)欠考虑训练样本间相似性的缺陷,并且在一定程度上降低二次规划求解的计算复杂度。然而,WLTSVM仍不能充分刻画类内样本潜在的局部几何结构,并且存在对噪声点敏感的风险。基于以上不足,提出一种鲁棒的加权孪生支持向量机(RWTSVM)。与WLTSVM相比,RWTSVM的优势在于:选用热核函数定义类内近邻图权值矩阵,可以更好地刻画类内样本潜在的局部几何结构及蕴含的鉴别信息;用类间近邻图选取边界点,同时结合类内近邻图使得超平面远离边界点中权重较大的样本,降低算法对噪声点敏感的风险。人造数据集和真实数据集上的测试结果验证算法RWTSVM的有效性。 展开更多
关键词 孪生支持向量 局部几何结构 噪声点 鲁棒性 分类
在线阅读 下载PDF
多项式光滑孪生支持向量回归机
11
作者 黄华娟 丁世飞 《微电子学与计算机》 CSCD 北大核心 2013年第10期5-8,共4页
针对光滑孪生支持向量回归机(Smooth Twin Support Vector Regression,STSVR)中Sigmoid函数逼近精度不高的问题,将正号函数展开为无穷多项式级数,由此得到一族光滑函数.采用该多项式光滑函数逼近孪生支持向量回归机的不可微项,并用Newto... 针对光滑孪生支持向量回归机(Smooth Twin Support Vector Regression,STSVR)中Sigmoid函数逼近精度不高的问题,将正号函数展开为无穷多项式级数,由此得到一族光滑函数.采用该多项式光滑函数逼近孪生支持向量回归机的不可微项,并用Newton-Armijo算法求解相应的模型,提出了多项式光滑孪生支持向量回归机(Polynomial Smooth Twin Support Vector Regression,PSTSVR).不仅从理论上证明了PSTSVR的收敛性和满足任意阶光滑的性能,而且在人工数据集和UCI数据集上的实验表明了PSTSVR比STSVR具有更好的回归性能. 展开更多
关键词 孪生支持向量回归 多项式 光滑Newton-Armijo算法
在线阅读 下载PDF
基于pinball损失的结构模糊孪生支持向量机 被引量:1
12
作者 李凯 李慧 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2221-2227,共7页
孪生支持向量机通过求解较小的二次规划问题,提高了分类器的性能,然而,该方法主要利用了类间可分的特性,并使用hinge损失函数构建相应的模型,它们并未充分考虑不同类中数据的结构信息以及不同样本对分类的影响,导致该方法对噪声具有较... 孪生支持向量机通过求解较小的二次规划问题,提高了分类器的性能,然而,该方法主要利用了类间可分的特性,并使用hinge损失函数构建相应的模型,它们并未充分考虑不同类中数据的结构信息以及不同样本对分类的影响,导致该方法对噪声具有较强的敏感性以及重取样的不稳定性.为了进一步提高孪生支持向量机的性能,基于pinball损失函数,将数据集中不同类的结构信息以及不同样本的作用引入到孪生支持向量机中,获得了基于pinball损失的结构模糊孪生支持向量机模型,从理论上导出了基于pinball损失的结构模糊孪生支持向量机算法pin-sftsvm,通过选取人工生成数据集与UCI标准数据集,对pin-sftsvm算法进行了实验,并与tbsvm、s-tsvm和pin-tsvm算法进行了性能比较,表明了提出算法的有效性. 展开更多
关键词 结构信息 pinball损失 模糊隶属度 孪生支持向量
在线阅读 下载PDF
基于稀疏孪生支持向量机的人脸识别 被引量:1
13
作者 宋静 《信息技术》 2020年第7期121-124,共4页
针对人脸识别问题,文中提出了一种稀疏孪生支持向量机(STSVM)模型。在TSVM算法的基础上,通过结合样本的局部密度和全局离散度构造STSVM,并利用局部密度和全局离散度对样本进行删减,实现了TSVM的稀疏化。此外,局部密度的引入使得STSVM对... 针对人脸识别问题,文中提出了一种稀疏孪生支持向量机(STSVM)模型。在TSVM算法的基础上,通过结合样本的局部密度和全局离散度构造STSVM,并利用局部密度和全局离散度对样本进行删减,实现了TSVM的稀疏化。此外,局部密度的引入使得STSVM对噪声不敏感。另一方面,将STSVM算法与“1 vs rest”方法相结合,解决了人脸检测的多类检测问题。最后,在ORL人脸数据集上对文中提出的算法进行验证。实验结果表明,文中提出的STSVM适用于人脸识别,且取得了令人满意的识别率。 展开更多
关键词 人脸识别 孪生支持向量 稀疏性 噪声不敏感
在线阅读 下载PDF
模糊型支持向量机及其在入侵检测中的应用 被引量:1
14
作者 李娜 孙乐 +2 位作者 胡一楠 李笑 王亚南 《科技创新与应用》 2018年第11期154-156,158,共4页
支持向量机是一种基于结构风险的机器学习方法,克服了传统学习方法仅采用经验风险最小化原理的不合理性,为此,研究人员将样本的隶属度引入到支持向量机中,以此解决支持向量机所存在的问题。在此基础上,文章通过分析研究模糊支持向量机F... 支持向量机是一种基于结构风险的机器学习方法,克服了传统学习方法仅采用经验风险最小化原理的不合理性,为此,研究人员将样本的隶属度引入到支持向量机中,以此解决支持向量机所存在的问题。在此基础上,文章通过分析研究模糊支持向量机FSVM、v型模糊支持向量机v-FSVM、模糊孪生支持向量机FTSVM,提出了v型模糊孪生支持向量机v-FTSVM;实验中选择了UCI数据集,验证了模糊型孪生支持向量机的性能。最后,将这些不同的支持向量机应用于入侵检测数据集,进一步检验模糊型支持向量机的有效性。 展开更多
关键词 支持向量 模糊孪生支持向量 实验数据分析
在线阅读 下载PDF
基于高斯噪声的孪生近端最小二乘支持向量回归模型研究及应用
15
作者 袁秋云 张仕光 +1 位作者 刘士琴 郭双乐 《南京师范大学学报(工程技术版)》 CAS 2022年第4期19-28,共10页
孪生近端最小二乘支持向量回归机(twin proximal least squares support vector regression,TPLSSVR)是在PLSSVR模型的理论基础上结合TSVR模型的双超平面理念而设计的一种新的回归模型.本文利用TPLSSVR模型框架构建了基于高斯噪声的孪... 孪生近端最小二乘支持向量回归机(twin proximal least squares support vector regression,TPLSSVR)是在PLSSVR模型的理论基础上结合TSVR模型的双超平面理念而设计的一种新的回归模型.本文利用TPLSSVR模型框架构建了基于高斯噪声的孪生近端最小二乘支持向量回归模型.该模型利用最小二乘方法,分别加入正则化项b_(1)^(2)、b_(2)_(2),将一个不等式约束问题转化为两个更简单的等式约束问题,提高了模型的泛化能力,有效提升了预测精度.为解决模型的参数选择问题,选用收敛速度快、鲁棒性好的粒子群优化算法对模型参数进行优化选择.将新构建的模型应用于人工数据集和风速数据集,实验结果显示该模型有较好的预测效果. 展开更多
关键词 孪生近端最小二乘支持向量回归 高斯噪声 风速预测 等式约束
在线阅读 下载PDF
基于TWSVM算法的发动机故障识别方法 被引量:12
16
作者 柳长源 车路平 毕晓君 《内燃机学报》 EI CAS CSCD 北大核心 2019年第1期84-89,共6页
为了快速有效地诊断出汽油发动机故障,提出了一种基于孪生支持向量机(TWSVM)的发动机故障诊断方法.该方法利用HC、CO、CO2、O2和NOx共5种尾气参数值,并对其进行规范化处理,然后把这些数据作为特征向量,用于孪生支持向量机构成的多分类... 为了快速有效地诊断出汽油发动机故障,提出了一种基于孪生支持向量机(TWSVM)的发动机故障诊断方法.该方法利用HC、CO、CO2、O2和NOx共5种尾气参数值,并对其进行规范化处理,然后把这些数据作为特征向量,用于孪生支持向量机构成的多分类器中进行训练和测试,从而达到识别故障类别的目的.试验结果表明:采用孪生支持向量机分类方法比利用传统支持向量机具有更好的分类效果,且训练速度更快;在小样本数据情况下,故障诊断正确率可达到98.4%,能有效描述汽车尾气成分变化与发动机故障状态之间的复杂关系. 展开更多
关键词 汽油 故障诊断 孪生支持向量 汽车尾气 分类器 核函数
在线阅读 下载PDF
基于改进VMD和TWSVM的雷达辐射源个体识别 被引量:1
17
作者 蒋闯 《信息技术与信息化》 2024年第5期101-106,共6页
为提高雷达辐射源个体在不同信噪比下的识别准确率,提出基于改进VMD和TWSVM的雷达辐射源个体识别方法。首先利用斑马优化算法(ZOA)优化变分模态分解(VMD)过程,找到最优分解参数组合;然后通过奇异值分解对辐射源信号经变分模态分解后得... 为提高雷达辐射源个体在不同信噪比下的识别准确率,提出基于改进VMD和TWSVM的雷达辐射源个体识别方法。首先利用斑马优化算法(ZOA)优化变分模态分解(VMD)过程,找到最优分解参数组合;然后通过奇异值分解对辐射源信号经变分模态分解后得到的各模态分量进行二次特征提取,选取奇异值作为个体特征组成特征向量;最后送入孪生支持向量机(TWSVM)中,完成分类识别。通过线性调频信号的仿真建模实验,初步验证了算法的可行性。再通过5部信号源所采集的实测数据验证,信噪比为15 dB时,识别效果已十分理想,可达94%以上的识别率。 展开更多
关键词 雷达辐射源个体识别 斑马优化算法 变分模态分解 奇异值分解 孪生支持向量
在线阅读 下载PDF
数字孪生驱动的薄壁件铣削刀具磨损状态识别方法 被引量:4
18
作者 宋清华 彭业振 +1 位作者 王润琼 刘战强 《航空制造技术》 CSCD 北大核心 2023年第3期46-52,60,共8页
薄壁零件由于其本身的弱刚性,铣削过程中极易发生颤振、变形,从而加剧刀具磨损,为提高薄壁零件的铣削加工效率和表面质量,提出了一种数字孪生与支持向量机(SVM)融合驱动的刀具磨损状态识别方法。利用时、频域分析和小波包变换提取特征向... 薄壁零件由于其本身的弱刚性,铣削过程中极易发生颤振、变形,从而加剧刀具磨损,为提高薄壁零件的铣削加工效率和表面质量,提出了一种数字孪生与支持向量机(SVM)融合驱动的刀具磨损状态识别方法。利用时、频域分析和小波包变换提取特征向量,通过网格搜索与交叉验证(GSCV)的方法进行超参数寻优,结合SVM算法构建薄壁零件铣削刀具磨损状态识别模型。试验结果表明,SVM算法在高维小样本数据的分类识别问题中优势明显,对于不同铣刀磨损状态的识别准确率分别达到96%和90.16%,具有较好的泛化能力。结合机器学习算法构建高保真、轻量化的数字孪生体,并将其嵌入薄壁零件铣削过程监测平台,以解决加工过程中信号实时监测和刀具磨损状态在线识别的问题。 展开更多
关键词 数字孪生 支持向量 刀具磨损 小波包变换 在线识别 薄壁件
在线阅读 下载PDF
基于TWSVM的C4ISR网络安全态势评估方法 被引量:7
19
作者 施亮亮 程建 《火力与指挥控制》 CSCD 北大核心 2017年第10期147-151,共5页
为进一步提升基于SVM的C4ISR网络安全态势评估方法的评估精度和鲁棒性,提出了一种基于孪生支持向量机的C4ISR网络安全态势评估方法。该方法首先分析了影响C4ISR网络安全态势的主要因素,然后基于孪生支持向量机,建立了C4ISR网络安全态势... 为进一步提升基于SVM的C4ISR网络安全态势评估方法的评估精度和鲁棒性,提出了一种基于孪生支持向量机的C4ISR网络安全态势评估方法。该方法首先分析了影响C4ISR网络安全态势的主要因素,然后基于孪生支持向量机,建立了C4ISR网络安全态势评估模型,通过非线性映射将网络安全态势样本各个要素特征向量映射到高维特征空间,继而利用多类核函数构造的不同分类面以及分类函数来对网络安全态势样本数据进行学习和参数估计,从而得到全局最优分类解。实验结果表明,与基于SVM的网络安全态势评估方法相比,所提方法在提高评估正确率的同时能够动态高效地反映出当前网络的安全态势,具有较强的鲁棒性。 展开更多
关键词 C4ISR 安全态势评估 孪生支持向量 评估方法
在线阅读 下载PDF
基于APSO和TWSVM的特高拱坝变形预测模型 被引量:13
20
作者 张才溢 傅蜀燕 +2 位作者 欧斌 胡孟凡 王春华 《水利水电科技进展》 CSCD 北大核心 2023年第4期46-51,共6页
为挖掘混凝土大坝变形监测数据与各影响因素之间复杂的非线性关系,提高特高拱坝变形预测精度,在孪生支持向量机(TWSVM)模型基础上,引入位置因子与速度因子,运用自适应粒子群优化(APSO)算法进行参数优化,构建了特高拱坝变形的APSO-TWSVM... 为挖掘混凝土大坝变形监测数据与各影响因素之间复杂的非线性关系,提高特高拱坝变形预测精度,在孪生支持向量机(TWSVM)模型基础上,引入位置因子与速度因子,运用自适应粒子群优化(APSO)算法进行参数优化,构建了特高拱坝变形的APSO-TWSVM预测模型。实例验证结果表明,该模型可有效挖掘拱坝变形与影响因子间复杂的非线性关系,模型运算速度和精度均比传统SVM模型有明显提升。 展开更多
关键词 特高拱坝 变形预测 孪生支持向量 自适应粒子群优化算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部