期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
增量式稀疏密度加权孪生支持向量回归机
1
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归机 增量学习 稀疏化 密度加权 牛顿迭代法
在线阅读 下载PDF
孪生支持向量回归机研究进展 被引量:4
2
作者 丁世飞 张子晨 +2 位作者 郭丽丽 张健 徐晓 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1117-1134,共18页
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练... 孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个加权系数,给予不同位置的训练样本不同程度的惩罚.(2)拉格朗日孪生支持向量回归机由于孪生支持向量回归机的对偶问题中半正定矩阵的逆矩阵可能不存在,若存在,则对偶问题不是严格凸函数,可能存在多个解,因此考虑使用松弛变量的2范数代替原有的1范数,使对偶问题更简单,易于求解.(3)最小二乘孪生支持向量回归机由于孪生支持向量回归机的求解需要在对偶空间进行,得到的解为近似解,考虑通过最小二乘法将原问题的不等式约束转化为等式约束,使得原问题可以在原空间内求解,在很大程度上降低计算时间,提高泛化性能,且不损失精度.(4)v-孪生支持向量回归机通过引入一组参数v1与v2自动调节ε1与ε2的值以控制训练样本的特定部分对两条回归超平面所能造成的最大误差,从而自适应给定数据的结构,提高孪生支持向量回归机的拟合精度.(5)ε-孪生支持向量回归机在孪生支持向量回归机的原问题中引入正则化项以达到结构风险最小化的目的,使对偶问题转化为稳定的正定二次规划问题,并通过SOR求解对偶问题,加快训练速度.(6)孪生参数不敏感支持向量回归机克服参数的选取对孪生支持向量回归机超平面构造的影响,使算法非常适合于存在异方差噪声数据的数据集,训练速度和泛化性能也有提升.本文同时对以上算法的数学模型、改进算法及应用进行了系统地分析与总结,给出了以上算法在9个UCI基准数据集上的回归性能与计算时间,并在模型结构层面逐一分析每个算法的表现与耗时的根本原因.对于其他不便于归类的孪生支持向量回归机改进算法及应用,本文也对其作逐一总结.整体来看,最小二乘孪生支持向量回归机在性能和计算时间方面表现最佳,拉格朗日孪生支持向量回归机、v-孪生支持向量回归机的性能并列次优且计算时间接近,加权孪生支持向量回归机、ε-孪生支持向量回归机和孪生参数不敏感支持向量回归机的性能不理想,但计算时间接近.本文旨在使读者对孪生支持向量回归机的不同改进算法之间的异同点与优缺点产生更深刻的理解与认识,从而将更多优秀的改进策略应用于孪生支持向量回归机,最终为进一步提高孪生支持向量回归机的性能以及扩展孪生支持向量回归机的应用范围提供较为清晰的思路. 展开更多
关键词 孪生支持向量回归机 拟合精度 泛化能力 计算时间
在线阅读 下载PDF
光滑CHKS孪生支持向量回归机 被引量:4
3
作者 黄华娟 丁世飞 史忠植 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期561-568,共8页
针对目前光滑孪生支持向量回归机(smooth twin support vector regression,STSVR)中采用的Sigmoid光滑函数逼近精度不高,从而导致算法泛化能力不够理想的问题,引入一种具有更强逼近能力的光滑(chen-harker-kanzow-smale,CHKS)函数,采用C... 针对目前光滑孪生支持向量回归机(smooth twin support vector regression,STSVR)中采用的Sigmoid光滑函数逼近精度不高,从而导致算法泛化能力不够理想的问题,引入一种具有更强逼近能力的光滑(chen-harker-kanzow-smale,CHKS)函数,采用CHKS函数逼近孪生支持向量回归机的不可微项,并用Newton-Armijo算法求解相应的模型,提出了光滑CHKS孪生支持向量回归机(smooth CHKS twin support vector regression,SCTSVR).不仅从理论上证明了SCTSVR具有严格凸,能满足任意阶光滑和全局收敛的性能,而且在人工数据集和UCI数据集上的实验表明了SCTSVR比STSVR具有更好的回归性能. 展开更多
关键词 孪生支持向量回归机 CHKS函数 光滑函数 Newton-Armijo算法 严格凸
在线阅读 下载PDF
基于灰狼优化算法的孪生支持向量回归机 被引量:7
4
作者 沈葛亮 顾斌杰 潘丰 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第2期202-208,共7页
为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同... 为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同的孪生支持向量回归机参数取值,通过有限次数迭代和灰狼优化算法的位置更新机制得到孪生支持向量回归机的最优参数。实验结果表明,该算法能够找到合适的参数;与现有算法相比,该算法的预测性能更佳,寻优时间显著缩短。 展开更多
关键词 孪生支持向量回归机 灰狼优化算法 参数优化 模型选择
在线阅读 下载PDF
增量式约简最小二乘孪生支持向量回归机 被引量:7
5
作者 曹杰 顾斌杰 +1 位作者 熊伟丽 潘丰 《计算机科学与探索》 CSCD 北大核心 2021年第3期553-563,共11页
为了解决增量式最小二乘孪生支持向量回归机存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机(IRLSTSVR)算法。该算法首先利用约简方法,判定核矩阵列向量之间的相关性,筛选出用于构成核... 为了解决增量式最小二乘孪生支持向量回归机存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机(IRLSTSVR)算法。该算法首先利用约简方法,判定核矩阵列向量之间的相关性,筛选出用于构成核矩阵列向量的样本作为支持向量以降低核矩阵中列向量的相关性,使得构成的核矩阵能够更好地逼近原核矩阵,保证解的稀疏性。然后通过分块矩阵求逆引理高效增量更新逆矩阵,进一步缩短了算法的训练时间。最后在基准测试数据集上验证算法的可行性和有效性。实验结果表明,与现有的代表性算法相比,IRLSTSVR算法能够获得稀疏解和更接近离线算法的泛化性能。 展开更多
关键词 最小二乘 孪生支持向量回归机(TSVR) 约简方法 增量式学习
在线阅读 下载PDF
基于自适应调节极大熵的孪生支持向量回归机 被引量:2
6
作者 黄华娟 韦修喜 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期1030-1039,共10页
孪生支持向量回归机(Twin Support Vector Regression,TSVR)的数学模型是求解一对约束优化问题,如何将约束优化问题转化为无约束优化问题进行求解是一个难题.在TSVR约束优化模型的基础上,依据最优化理论提出TSVR的无约束优化问题.然而,... 孪生支持向量回归机(Twin Support Vector Regression,TSVR)的数学模型是求解一对约束优化问题,如何将约束优化问题转化为无约束优化问题进行求解是一个难题.在TSVR约束优化模型的基础上,依据最优化理论提出TSVR的无约束优化问题.然而,无约束优化问题的目标函数有可能不可微,为解决这个问题,引入极大熵函数,确保优化问题都是可微的.标准的极大熵函数法有可能发生数值溢出,所以对极大熵函数法进行了改进,提出自适应调节极大熵函数法来逼近TSVR的不可微项,并提出基于自适应调节极大熵函数法的TSVR学习算法.实验结果表明,和其他回归方法相比,所提算法不仅能够提高回归精度,而且效率得到了较大的提高. 展开更多
关键词 孪生支持向量回归机 优化理论 极大熵函数法 自适应 Newton算法
在线阅读 下载PDF
精确增量式ε型孪生支持向量回归机 被引量:1
7
作者 曹杰 顾斌杰 +1 位作者 潘丰 熊伟丽 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第6期1020-1032,共13页
为了解决现有ε型孪生支持向量回归机的训练算法无法高效处理线性回归的增量学习问题,提出了一种精确增量式ε型孪生支持向量回归机(AIETSVR).首先通过计算新增样本的拉格朗日乘子以及调整边界样本的拉格朗日乘子,尽可能减少新增样本的... 为了解决现有ε型孪生支持向量回归机的训练算法无法高效处理线性回归的增量学习问题,提出了一种精确增量式ε型孪生支持向量回归机(AIETSVR).首先通过计算新增样本的拉格朗日乘子以及调整边界样本的拉格朗日乘子,尽可能减少新增样本的二次损失对原有样本的影响,使得大部分原有样本依然满足Karush–Kuhn–Tucker(KKT)条件,从而获得一个有效的初始状态;其次对异常拉格朗日乘子逐步调整至满足KKT条件;然后从理论上分析了AIETSVR的可行性和有限收敛性;最后在基准测试数据集上进行仿真.结果表明,与现有的代表性算法相比,AIETSVR能够获得精确解,在缩短大规模数据集的训练时间上优势显著. 展开更多
关键词 器学习 增量学习 在线学习 孪生支持向量回归机 学习算法 可行性分析 有限收敛性分析
在线阅读 下载PDF
增量式约简拉氏非对称ν型孪生支持向量回归机 被引量:1
8
作者 张帅鑫 顾斌杰 潘丰 《计算机科学与探索》 CSCD 北大核心 2023年第11期2640-2650,共11页
拉氏非对称ν型孪生支持向量回归机是一种泛化性能良好的预测算法,然而其并不适用于增量提供样本的场景。为此,提出了一种增量式约简拉氏非对称ν型孪生支持向量回归机(IRLAsy-ν-TSVR)算法。首先,引入正号函数,将有约束最优化问题转换... 拉氏非对称ν型孪生支持向量回归机是一种泛化性能良好的预测算法,然而其并不适用于增量提供样本的场景。为此,提出了一种增量式约简拉氏非对称ν型孪生支持向量回归机(IRLAsy-ν-TSVR)算法。首先,引入正号函数,将有约束最优化问题转换成无约束最优化问题,并采用半光滑牛顿法在原始空间直接求解,以加快收敛速度。接着,利用矩阵求逆引理,实现半光滑牛顿法中Hessian矩阵求逆的高效增量更新,节省时间开销。然后,为了减少样本累积导致的内存消耗,使用约简技术分别筛选增广核矩阵的列向量和行向量以逼近原增广核矩阵,确保解的稀疏性。最后,在基准测试数据集上验证算法的可行性和有效性。结果表明,与一些代表性算法相比,IRLAsy-ν-TSVR算法继承了离线算法的泛化性能,能够获得稀疏解,更适合大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归机(TSVR) 半光滑牛顿法 在线学习 增量式学习 约简技术
在线阅读 下载PDF
新型鲁棒孪生支持向量回归机 被引量:1
9
作者 陈素根 石婷 《计算机科学与探索》 CSCD 北大核心 2023年第5期1157-1167,共11页
回归问题是模式识别与机器学习领域的基本问题之一,孪生支持向量回归机(TSVR)是在支持向量回归机(SVR)基础上发展而来的一种处理回归问题的新算法,它在处理无噪声数据时表现出较好的性能,但在处理有噪声数据时往往性能不佳。为了降低噪... 回归问题是模式识别与机器学习领域的基本问题之一,孪生支持向量回归机(TSVR)是在支持向量回归机(SVR)基础上发展而来的一种处理回归问题的新算法,它在处理无噪声数据时表现出较好的性能,但在处理有噪声数据时往往性能不佳。为了降低噪声对孪生支持向量回归机性能的影响,结合ε-不敏感损失函数与Huber损失函数构造了混合Hε损失函数,该损失函数可以有效地适应于不同分布类型的噪声;然后基于混合Hε损失函数和结构风险最小化(SRM)原则提出了一种鲁棒的孪生支持向量回归机(Hε-TSVR),并在原始空间中利用牛顿迭代法求解模型。分别在有噪声和无噪声的人工数据集、UCI数据集上进行实验,与支持向量回归机和孪生支持向量回归机等算法比较,实验结果验证了所提算法的有效性。 展开更多
关键词 模式识别 支持向量回归(SVR) 孪生支持向量回归机(TSVR) 损失函数
在线阅读 下载PDF
最小二乘孪生参数化不敏感支持向量回归机 被引量:7
10
作者 丁世飞 黄华娟 《软件学报》 EI CSCD 北大核心 2017年第12期3146-3155,共10页
孪生参数化不敏感支持向量回归机(twin parametric insensitive support vector regression,简称TPISVR)是一种新型机器学习方法.与其他回归方法相比,TPISVR在处理异方差噪声方面具有独特的优势.标准TPISVR的训练算法可以归结为在对偶... 孪生参数化不敏感支持向量回归机(twin parametric insensitive support vector regression,简称TPISVR)是一种新型机器学习方法.与其他回归方法相比,TPISVR在处理异方差噪声方面具有独特的优势.标准TPISVR的训练算法可以归结为在对偶空间求解一对具有不等式约束的二次规划问题.然而,这种求解方法的时间消耗比较大.引入最小二乘思想,将TPISVR的两个二次规划问题转化为两个线性方程组,并在原始空间上直接求解,提出了最小二乘孪生参数化不敏感支持向量回归机(least squares TPISVR,简称LSTPISVR).为了解决LSTPISVR的参数选择问题,提出了混沌布谷鸟优化算法,并用其对LSTPISVR的参数进行优化选择.在人工数据集和UCI数据集上的实验结果表明:LSTPISVR在保持精度不下降的情况下,具有更高的运行效率. 展开更多
关键词 孪生参数化不敏感支持向量回归 异方差性 最小二乘 混沌布谷鸟优化算法
在线阅读 下载PDF
光滑孪生参数化不敏感支持向量回归机 被引量:1
11
作者 黄华娟 韦修喜 周永权 《郑州大学学报(工学版)》 CAS 北大核心 2022年第2期28-34,共7页
作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转... 作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转化对偶问题的方法求解2个带有不等式约束的二次规划问题,然而这种求解二次规划问题的方法对于样本数目较大的问题将受到时间和内存的制约,这是导致TPISVR训练效率低的关键所在。针对此问题,首先,引入正号函数,将TPISVR的2个二次规划问题转化为2个不可微的无约束优化问题;其次,引入CHKS光滑函数和正则项,对TPISVR模型进行正则化,并对不可微的无约束优化问题进行光滑逼近,从而将不可微的模型转化为可微的无约束优化问题,并用收敛速度快的Newton-Armijo方法求解新模型,提出光滑孪生参数化不敏感支持向量回归机(STPISVR);最后,从理论上证明了STPISVR模型是收敛的,并具有任意阶光滑性。为了验证所提算法的有效性和可行性,对机器学习常用的人工数据集和UCI数据集进行仿真实验。实验结果表明:和其他机器学习方法相比,STPISVR在保证精度不下降的前提下,获得了更高的训练效率。 展开更多
关键词 孪生参数化不敏感支持向量回归 光滑技术 异方差噪声 NEWTON法 训练效率
在线阅读 下载PDF
基于正则化TSVR的甘蔗收割机切割器入土切割负载压力预测研究 被引量:6
12
作者 麻芳兰 罗晓虎 +3 位作者 李科 王中彬 申科 邓樟林 《中国农机化学报》 北大核心 2021年第2期8-14,24,共8页
为更准确、快速地对甘蔗收割机切割器入土切割时负载压力的预测,以机车行进速度、土壤含水率、土壤密度、刀盘入土深度以及甘蔗密度为模型输入,基于正则化孪生支持向量回归机(ITSVR)模型,结合基于遗传算法的粒子群优化算法对切割器负载... 为更准确、快速地对甘蔗收割机切割器入土切割时负载压力的预测,以机车行进速度、土壤含水率、土壤密度、刀盘入土深度以及甘蔗密度为模型输入,基于正则化孪生支持向量回归机(ITSVR)模型,结合基于遗传算法的粒子群优化算法对切割器负载压力进行仿真模拟预测,并将仿真结果与BP神经网络、支持向量回归(TSVR)、极限学习机(ELM)以及孪生支持向量回归(TSVR)模型进行比较分析,最后建立预测系统验证ITSVR的可行性。结果表明:测试样本中正则化孪生支持向量回归机(ITSVR)模型的RMSE、MAE、R^(2)分别为0.0154、0.0108、0.9558,模型的预测时间为5.9 ms,该模型能较准确且较快地对负载压力与影响参数的非线性曲线进行拟合;ITSVR模型较其他模型具有良好的拟合能力以及较快的预测速度;在以5%和10%相对误差作为合格指标模型评价时,ITSVR模型预测的正确率分别为66.7%和100%,有力证明ITSVR模型的可行性。研究结果可为后续的切割自动控制系统设计提供参考依据。 展开更多
关键词 甘蔗收割 负载压力 孪生支持向量回归机 粒子群优化算法
在线阅读 下载PDF
改进的TSVR模型在股市高频数据上的预测 被引量:8
13
作者 张冰 王传美 贺素香 《计算机工程与设计》 北大核心 2019年第11期3241-3246,共6页
为构建更精准的股票价格预测模型,提出具有局部信息挖掘功能的DNN加权算法对eplion-TSVR模型进行改进,并对改进模型的求解进行推导,针对DNN算法对于参数的选取太过随意,提出使用网格搜索法确定DNN的最优参数以确定最优DR域。搜集中国上... 为构建更精准的股票价格预测模型,提出具有局部信息挖掘功能的DNN加权算法对eplion-TSVR模型进行改进,并对改进模型的求解进行推导,针对DNN算法对于参数的选取太过随意,提出使用网格搜索法确定DNN的最优参数以确定最优DR域。搜集中国上证A股中的15支股票的日价格和高频5分钟价格数据并计算其技术指标,对20天以及20分钟后的收盘价进行实证预测。预测结果显示,改进模型在高频股票数据上具有很好的预测能力和泛化性能。 展开更多
关键词 D近邻加权算法 孪生支持向量回归机 股价预测 高频数据 网格搜索
在线阅读 下载PDF
基于KICA-TSVR方法乙烯裂解产物分布软测量 被引量:3
14
作者 邱梦婵 苏成利 +1 位作者 钟国财 梁建平 《控制工程》 CSCD 北大核心 2015年第3期458-464,共7页
针对乙烯裂解关键质量指标乙烯裂解产物分布难以实时测量的问题,提出一种基于核独立成分分析与孪生支持向量回归机(KICA-TSVR,Kernel Independent Component Analysis-twin Support Vector Regression)软测量建模方法。该方法首先采用KI... 针对乙烯裂解关键质量指标乙烯裂解产物分布难以实时测量的问题,提出一种基于核独立成分分析与孪生支持向量回归机(KICA-TSVR,Kernel Independent Component Analysis-twin Support Vector Regression)软测量建模方法。该方法首先采用KICA(Kernel Independent Component Analysis)算法在非线性高维空间中进行样本特征提取,解决了TSVR因缺少结构风险最小化除噪能力差的问题,提高了模型预测精度。由于TSVR只需求解2个小规模的QP问题且其对偶问题中没有约束条件,使模型具有较快的训练速度。将KICA-TSVR用于乙烯裂解产物分布软测量建模,实验结果表明,同标准SVR(Support Vector Regression)和KICA-SVR方法相比,KICA-TSVR具有更好的模型预测效果和更快的训练速度。 展开更多
关键词 孪生支持向量回归机 核独立成分分析 软测量 乙烯裂解产物
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部