期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
最小二乘孪生参数化不敏感支持向量回归机 被引量:7
1
作者 丁世飞 黄华娟 《软件学报》 EI CSCD 北大核心 2017年第12期3146-3155,共10页
孪生参数化不敏感支持向量回归机(twin parametric insensitive support vector regression,简称TPISVR)是一种新型机器学习方法.与其他回归方法相比,TPISVR在处理异方差噪声方面具有独特的优势.标准TPISVR的训练算法可以归结为在对偶... 孪生参数化不敏感支持向量回归机(twin parametric insensitive support vector regression,简称TPISVR)是一种新型机器学习方法.与其他回归方法相比,TPISVR在处理异方差噪声方面具有独特的优势.标准TPISVR的训练算法可以归结为在对偶空间求解一对具有不等式约束的二次规划问题.然而,这种求解方法的时间消耗比较大.引入最小二乘思想,将TPISVR的两个二次规划问题转化为两个线性方程组,并在原始空间上直接求解,提出了最小二乘孪生参数化不敏感支持向量回归机(least squares TPISVR,简称LSTPISVR).为了解决LSTPISVR的参数选择问题,提出了混沌布谷鸟优化算法,并用其对LSTPISVR的参数进行优化选择.在人工数据集和UCI数据集上的实验结果表明:LSTPISVR在保持精度不下降的情况下,具有更高的运行效率. 展开更多
关键词 孪生参数化不敏感支持向量回归机 异方差性 最小二乘 混沌布谷鸟优算法
在线阅读 下载PDF
光滑孪生参数化不敏感支持向量回归机 被引量:1
2
作者 黄华娟 韦修喜 周永权 《郑州大学学报(工学版)》 CAS 北大核心 2022年第2期28-34,共7页
作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转... 作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转化对偶问题的方法求解2个带有不等式约束的二次规划问题,然而这种求解二次规划问题的方法对于样本数目较大的问题将受到时间和内存的制约,这是导致TPISVR训练效率低的关键所在。针对此问题,首先,引入正号函数,将TPISVR的2个二次规划问题转化为2个不可微的无约束优化问题;其次,引入CHKS光滑函数和正则项,对TPISVR模型进行正则化,并对不可微的无约束优化问题进行光滑逼近,从而将不可微的模型转化为可微的无约束优化问题,并用收敛速度快的Newton-Armijo方法求解新模型,提出光滑孪生参数化不敏感支持向量回归机(STPISVR);最后,从理论上证明了STPISVR模型是收敛的,并具有任意阶光滑性。为了验证所提算法的有效性和可行性,对机器学习常用的人工数据集和UCI数据集进行仿真实验。实验结果表明:和其他机器学习方法相比,STPISVR在保证精度不下降的前提下,获得了更高的训练效率。 展开更多
关键词 孪生参数化不敏感支持向量回归机 光滑技术 异方差噪声 NEWTON法 训练效率
在线阅读 下载PDF
增量式稀疏密度加权孪生支持向量回归机
3
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏 密度加权 牛顿迭代法
在线阅读 下载PDF
基于灰狼优化算法的孪生支持向量回归机 被引量:7
4
作者 沈葛亮 顾斌杰 潘丰 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第2期202-208,共7页
为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同... 为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同的孪生支持向量回归机参数取值,通过有限次数迭代和灰狼优化算法的位置更新机制得到孪生支持向量回归机的最优参数。实验结果表明,该算法能够找到合适的参数;与现有算法相比,该算法的预测性能更佳,寻优时间显著缩短。 展开更多
关键词 孪生支持向量回归 灰狼优算法 参数 模型选择
在线阅读 下载PDF
孪生支持向量回归机研究进展 被引量:4
5
作者 丁世飞 张子晨 +2 位作者 郭丽丽 张健 徐晓 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1117-1134,共18页
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练... 孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个加权系数,给予不同位置的训练样本不同程度的惩罚.(2)拉格朗日孪生支持向量回归机由于孪生支持向量回归机的对偶问题中半正定矩阵的逆矩阵可能不存在,若存在,则对偶问题不是严格凸函数,可能存在多个解,因此考虑使用松弛变量的2范数代替原有的1范数,使对偶问题更简单,易于求解.(3)最小二乘孪生支持向量回归机由于孪生支持向量回归机的求解需要在对偶空间进行,得到的解为近似解,考虑通过最小二乘法将原问题的不等式约束转化为等式约束,使得原问题可以在原空间内求解,在很大程度上降低计算时间,提高泛化性能,且不损失精度.(4)v-孪生支持向量回归机通过引入一组参数v1与v2自动调节ε1与ε2的值以控制训练样本的特定部分对两条回归超平面所能造成的最大误差,从而自适应给定数据的结构,提高孪生支持向量回归机的拟合精度.(5)ε-孪生支持向量回归机在孪生支持向量回归机的原问题中引入正则化项以达到结构风险最小化的目的,使对偶问题转化为稳定的正定二次规划问题,并通过SOR求解对偶问题,加快训练速度.(6)孪生参数不敏感支持向量回归机克服参数的选取对孪生支持向量回归机超平面构造的影响,使算法非常适合于存在异方差噪声数据的数据集,训练速度和泛化性能也有提升.本文同时对以上算法的数学模型、改进算法及应用进行了系统地分析与总结,给出了以上算法在9个UCI基准数据集上的回归性能与计算时间,并在模型结构层面逐一分析每个算法的表现与耗时的根本原因.对于其他不便于归类的孪生支持向量回归机改进算法及应用,本文也对其作逐一总结.整体来看,最小二乘孪生支持向量回归机在性能和计算时间方面表现最佳,拉格朗日孪生支持向量回归机、v-孪生支持向量回归机的性能并列次优且计算时间接近,加权孪生支持向量回归机、ε-孪生支持向量回归机和孪生参数不敏感支持向量回归机的性能不理想,但计算时间接近.本文旨在使读者对孪生支持向量回归机的不同改进算法之间的异同点与优缺点产生更深刻的理解与认识,从而将更多优秀的改进策略应用于孪生支持向量回归机,最终为进一步提高孪生支持向量回归机的性能以及扩展孪生支持向量回归机的应用范围提供较为清晰的思路. 展开更多
关键词 孪生支持向量回归 拟合精度 能力 计算时间
在线阅读 下载PDF
基于参数自适应SVR和VMD-TCN的水电机组劣化趋势预测 被引量:5
6
作者 王淑青 柯洋洋 +2 位作者 胡文庆 罗平章 李青珏 《中国农村水利水电》 北大核心 2024年第4期193-198,204,共7页
针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机... 针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机组劣化趋势预测方法;首先按照功率和水头将机组运行工况细化为若干典型工况,在此基础上采用改进天鹰算法建立SVR模型,对各个工况下的预测参数进行寻优,建立起工况与最优参数的数据;再通过神经网络对工况和最优预测参数进行拟合,构建出映射两者复杂关系的非线性函数,然后将构建出的映射关系加入到传统的SVR中,实现适应于水电机组工况变化的自适应SVR健康模型;其次,根据健康模型输出的标准值和监测数据,计算出劣化趋势序列;最后,考虑到劣化趋势序列的非线性因素,建立了一个基于VMD-TCN的时间序列预测模型,以实现对劣化趋势的准确预测。并设计多组对比实验,验证所提出模型的精度更高,时间更快。 展开更多
关键词 水电 趋势预测 参数自适应 支持向量回归 变分模态分解 时间卷积网络
在线阅读 下载PDF
改进的稀疏孪生支持向量回归算法 被引量:4
7
作者 王岩 朱齐丹 +1 位作者 刘志林 杨震 《系统工程与电子技术》 EI CSCD 北大核心 2012年第9期1940-1945,共6页
相比传统支持向量机,尽管孪生支持向量机具有较快的计算速度,然而不具备结构风险最小化和稀疏性,易产生过拟合现象。针对这一问题,提出了一种具有稀疏性的改进的孪生支持向量回归算法。通过在目标函数中加入正则项将结构风险最小化原则... 相比传统支持向量机,尽管孪生支持向量机具有较快的计算速度,然而不具备结构风险最小化和稀疏性,易产生过拟合现象。针对这一问题,提出了一种具有稀疏性的改进的孪生支持向量回归算法。通过在目标函数中加入正则项将结构风险最小化原则引入到孪生支持向量回归算法中,改善了算法的回归性能;同时选择训练样本的一个子集代替全部的训练样本,使核函数由方阵转变成矩形阵,从而使算法具有稀疏性,有效减少运算时间。仿真结果证明了该算法的有效性。 展开更多
关键词 人工智能 回归 孪生支持向量 稀疏性 结构风险最小 过拟合
在线阅读 下载PDF
基于EPO算法去除水分影响的土壤有机质高光谱估算 被引量:12
8
作者 洪永胜 于雷 +5 位作者 朱亚星 吴红霞 聂艳 周勇 QI Feng 夏天 《土壤学报》 CAS CSCD 北大核心 2017年第5期1068-1078,共11页
野外进行土壤有机质的光谱快速预测时需考虑土壤含水量的影响。在室内设计人工加湿实验分别获取9个土壤含水量梯度(0~32%,间隔4%)的土壤光谱数据,分析土壤含水量变化对光谱的影响,再利用外部参数正交化法(external parameter orthogonal... 野外进行土壤有机质的光谱快速预测时需考虑土壤含水量的影响。在室内设计人工加湿实验分别获取9个土壤含水量梯度(0~32%,间隔4%)的土壤光谱数据,分析土壤含水量变化对光谱的影响,再利用外部参数正交化法(external parameter orthogonalization,EPO)进行湿土光谱校正,并结合偏最小二乘回归和支持向量机回归分别建立土壤有机质预测模型。结果表明,土壤光谱反射率随着土壤含水量的增加呈非线性降低趋势,偏最小二乘回归模型的预测偏差比为1.16,模型不可用;经EPO算法校正后,各土壤含水量梯度之间的光谱差异性降低,能实现土壤有机质在不同土壤含水量梯度的有效估算,偏最小二乘回归和支持向量机回归模型的预测偏差比分别提高至1.76和2.15。研究结果可为田间快速预测土壤有机质提供必要参考。 展开更多
关键词 土壤光谱 含水量 外部参数正交 支持向量回归 江汉平原
在线阅读 下载PDF
某土工膜堆石坝帷幕后水位偏高成因初步分析 被引量:5
9
作者 姜宇航 戴妙林 +2 位作者 刘晓青 吴玉江 张冀 《人民黄河》 CAS 北大核心 2020年第7期95-99,共5页
某土工膜堆石坝的坝基防渗体系包括趾板及坝基帷幕,帷幕后实测水位偏高,与上游水位连通性较强,需要对其成因进行分析。基于渗流观测资料建立回归模型进行初步分析,运用正交试验设计和渗流有限元计算生成训练样本,对各影响因素进行敏感... 某土工膜堆石坝的坝基防渗体系包括趾板及坝基帷幕,帷幕后实测水位偏高,与上游水位连通性较强,需要对其成因进行分析。基于渗流观测资料建立回归模型进行初步分析,运用正交试验设计和渗流有限元计算生成训练样本,对各影响因素进行敏感性分析。借助支持向量机在小样本中的高度非线性映射能力,建立渗流参数与渗压水位的对应关系。采用遗传算法对支持向量机模型进行参数优化,以支持向量机预测值与实测值误差作为适应度值,对坝基地层和防渗体各区域渗流参数进行优化搜索,并将反演结果进行反馈计算验证。结果表明,基于支持向量机-遗传算法反演渗流参数是可行的,帷幕后渗压水位偏高由趾板与帷幕间的裂缝及坝基渗流各向异性综合引起,可针对上述薄弱部位进行工程处理以降低幕后水位。 展开更多
关键词 土工膜堆石坝 回归模型 正交试验设计 敏感性分析 支持向量 遗传算法 渗流参数反演
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部