期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
小波神经网络在模拟电路故障诊断中的应用
1
作者 韩宝如 孟玲玲 《兵工自动化》 2007年第6期20-20,共1页
模拟电路故障诊断有故障字典法、故障参数识别法、故障验证法。小波神经网络可避免MLP等神经网络结构设计的盲目性,具有逼近能力强、网络学习收敛速度快、参数的选取有理论指导、能有效避免局部最小值问题等优点。随着小波理论和神经网... 模拟电路故障诊断有故障字典法、故障参数识别法、故障验证法。小波神经网络可避免MLP等神经网络结构设计的盲目性,具有逼近能力强、网络学习收敛速度快、参数的选取有理论指导、能有效避免局部最小值问题等优点。随着小波理论和神经网络理论的不断发展,小波神经网络将日益成熟应用于模拟电路故障诊断领域。 展开更多
关键词 电路故障诊断 小波神经网络 模拟 应用 网络结构设计 学习收敛速度 神经网络理论 故障字典法
在线阅读 下载PDF
一种优化权初值的综合全局寻优快速BP算法 被引量:5
2
作者 董光平 方敏 王经维 《合肥工业大学学报(自然科学版)》 CAS CSCD 2000年第6期992-995,共4页
文章在大量实验的基础上 ,对 BP算法中存在学习收敛速度慢的问题进行了广泛的研究 ,提出了在优化权初值的基础上 ,将变步长法与模拟退火法相结合 ,实现一种快速的综合全局寻优的前馈神经网络学习算法。通过在系统建模中的应用 。
关键词 神经网络 BP算法 系统建模 学习收敛速度 综合全局寻优
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
3
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部