提出了一种结合C-均值聚类的自适应共振(Adaptive Resonance Theory 2,ART2)神经网络无监督学习分类方法,用于风电机组齿轮箱设备群的故障诊断.利用某风电场齿轮箱运行数据,采用ART2神经网络对样本数据进行初步分类,再采用C-均值聚类算...提出了一种结合C-均值聚类的自适应共振(Adaptive Resonance Theory 2,ART2)神经网络无监督学习分类方法,用于风电机组齿轮箱设备群的故障诊断.利用某风电场齿轮箱运行数据,采用ART2神经网络对样本数据进行初步分类,再采用C-均值聚类算法对神经网络分类结果进行修正,得到最终诊断结果,并与ART2神经网络分类结果进行了比较.结果表明:所提出的方法解决了原始神经网络算法存在"硬竞争"导致分类精度下降的问题,准确度高于传统的ART2神经网络,可以准确识别出故障齿轮箱.展开更多
文摘在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。
文摘提出了一种结合C-均值聚类的自适应共振(Adaptive Resonance Theory 2,ART2)神经网络无监督学习分类方法,用于风电机组齿轮箱设备群的故障诊断.利用某风电场齿轮箱运行数据,采用ART2神经网络对样本数据进行初步分类,再采用C-均值聚类算法对神经网络分类结果进行修正,得到最终诊断结果,并与ART2神经网络分类结果进行了比较.结果表明:所提出的方法解决了原始神经网络算法存在"硬竞争"导致分类精度下降的问题,准确度高于传统的ART2神经网络,可以准确识别出故障齿轮箱.