期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
1
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
基于季节性差分整合移动平均自回归模型的城市公交短期客流预测 被引量:9
2
作者 李炜聪 潘福全 +3 位作者 胡盼 张丽霞 杨晓霞 杨金顺 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期308-314,共7页
为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本... 为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本,对非平稳的客流时间序列进行1阶7步差分处理,对差分后的数据进行平稳性检验;通过相对信息量计算,确定预测模型中未知参数,对差分处理后的时间序列进行标准化残差检验,检验结果为白噪声序列,得到周期为7的季节性差分整合移动平均自回归预测模型;利用预测模型对2019年7—12月公交客流量进行预测与误差分析。结果表明,模型预测的平均相对误差为4.02%,最大相对误差为8.36%,模型预测精度较高,适用于青岛市公交短期客流量预测。 展开更多
关键词 交通预测 短期客流预测 季节性差分整合移动平均自回归模型 城市公交 平稳性检验
在线阅读 下载PDF
基于自回归滑动平均模型和粒子群算法的地震子波提取 被引量:7
3
作者 戴永寿 牛慧 +1 位作者 彭星 王少水 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期47-50,57,共5页
基于自回归滑动平均(ARMA)模型理论,对地震子波进行参数化建模,采用累积量拟合法精确估计参数,使地震子波提取问题最终归结为一个多参数、多极值的非线性函数优化问题。对基本粒子群算法进行改进,通过自适应参数调整和边界约束,克服基... 基于自回归滑动平均(ARMA)模型理论,对地震子波进行参数化建模,采用累积量拟合法精确估计参数,使地震子波提取问题最终归结为一个多参数、多极值的非线性函数优化问题。对基本粒子群算法进行改进,通过自适应参数调整和边界约束,克服基本粒子群算法易陷入局部极值的缺陷,同时提高算法寻优精度和计算效率。仿真数据试验结果验证了改进的粒子群算法在地震子波提取方法中的有效性和稳定性。 展开更多
关键词 地震数据处理 自回归滑动平均模型 地震子波 系统辨识 累积量拟合 粒子群算法
在线阅读 下载PDF
基于差分自回归滑动平均模型的风电场短期风速预测 被引量:8
4
作者 孟天星 张厚升 《科学技术与工程》 北大核心 2013年第33期9813-9818,共6页
目前,风力发电的并网规模越来越大;但是鉴于风力发电特有的间歇性和随机性,难免会对电力系统的稳定运行和电能质量造成巨大影响;也就限制了风电的发展速度与规模。对风力发电场的风速进行中、长、短期的预测可以在一定程度上有效地解决... 目前,风力发电的并网规模越来越大;但是鉴于风力发电特有的间歇性和随机性,难免会对电力系统的稳定运行和电能质量造成巨大影响;也就限制了风电的发展速度与规模。对风力发电场的风速进行中、长、短期的预测可以在一定程度上有效地解决该问题。依据风速序列的自相关性以及时序性,提出了一种基于时间序列分析的风电场短期风速预测ARIMA模型。重点讨论了建模的过程、模型的识别、模型的定阶和模型参数的估计。最后结合风电场实际,对比于持续法预测,给出了相应的预测结果和误差分析,验证了所提出的ARIMA模型用于风电场风速预测的可行性。 展开更多
关键词 风电 风速预测 时间序列 自回归滑动平均 差分自回归滑动平均
在线阅读 下载PDF
多元自回归滑动平均模型辨识与电力系统自适应阻尼控制 被引量:14
5
作者 陆超 吴超 +2 位作者 王天 陈湘 于同伟 《中国电机工程学报》 EI CSCD 北大核心 2010年第19期31-36,共6页
传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving a... 传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。 展开更多
关键词 类噪声信号 自回归滑动平均模型辨识 零极点配置 遗传算法 自适应控制
在线阅读 下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
6
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
在线阅读 下载PDF
非线性时间序列建模的混合自回归滑动平均模型 被引量:17
7
作者 王红军 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第6期875-881,共7页
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算... 提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征. 展开更多
关键词 混合自回归滑动平均模型 自相关 平稳性 期望极大化算法 条件异方差
在线阅读 下载PDF
基于差分自回归—随机森林的动车组轮对旋修策略优化研究 被引量:1
8
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
在线阅读 下载PDF
基于TDOA算法的差分UWB室内定位系统研究 被引量:29
9
作者 陈小斯 沈重 +2 位作者 周群 张鲲 郑理强 《现代电子技术》 北大核心 2018年第6期45-49,共5页
超宽带UWB定位技术在受到电磁干扰、NLOS等情况影响时,实际定位环境变得复杂,造成实际定位精度不高、定位稳定性差。通过借鉴差分GPS技术,以TDOA-UWB室内定位技术为基础,提出差分UWB定位算法。同时结合权重滑动平均法,研究并提出基于TDO... 超宽带UWB定位技术在受到电磁干扰、NLOS等情况影响时,实际定位环境变得复杂,造成实际定位精度不高、定位稳定性差。通过借鉴差分GPS技术,以TDOA-UWB室内定位技术为基础,提出差分UWB定位算法。同时结合权重滑动平均法,研究并提出基于TDOA算法的差分UWB室内定位系统,以Hainan EVK 2.0系统作为实验平台进行相关的测试实验。实验结果表明,基于TDOA算法的差分UWB室内定位系统能有效提高定位精度和定位稳定性,在受到外界干扰的情况下,定位误差整体降低23%。 展开更多
关键词 超宽带定位 TDOA算法 差分GPS 差分UWB定位 权重滑动平均 室内定位系统
在线阅读 下载PDF
基于季节性分解的时间序列在主变压器缺陷率预测中的应用 被引量:7
10
作者 李勋 张宏钊 +4 位作者 姚森敬 黄荣辉 刘顺桂 吕启深 张林 《电网与清洁能源》 北大核心 2015年第11期19-25,共7页
针对主变压器缺陷率序列具有的非线性和非平稳性特点,以及主变压器缺陷发生具有季节性的特征,提出将主变压器缺陷率序列进行季节性分解和时间序列ARIMA预测相结合对主变缺陷率进行预测,以探寻较为有效的主变压器缺陷率的预测方法。首先... 针对主变压器缺陷率序列具有的非线性和非平稳性特点,以及主变压器缺陷发生具有季节性的特征,提出将主变压器缺陷率序列进行季节性分解和时间序列ARIMA预测相结合对主变缺陷率进行预测,以探寻较为有效的主变压器缺陷率的预测方法。首先,对原始序列进行预处理,将其分解为一系列不同的模式分量,这样能够突出原始主变缺陷率序列的局部特征信息;然后,分析各分量,根据其变化规律,采用时间序列法建立相应的模型并进行预测,这样既简化了建立的模型又降低了不同分量间的干涉和耦合;最后将各分量的预测值叠加得到缺陷率的预测值。算例结果表明,该方法具有较好的预测效果。 展开更多
关键词 主变压器 缺陷率 季节性分解 时间序列 自回归积分滑动平均模型 预测
在线阅读 下载PDF
融合延迟变换和张量分解的金融时序预测算法 被引量:3
11
作者 李大舟 于锦涛 +2 位作者 高巍 陈思思 朱风兰 《计算机工程与设计》 北大核心 2022年第5期1295-1303,共9页
金融时序预测可以为从业人员提供行业变化趋势信息。采用多路延迟嵌入变换将时间序列转化为低秩块Hankel张量,利用Tucker分解将高阶张量投影到压缩核心张量中,对核心张量使用季节性差分自回归滑动平均算法实现对未来的预测。在4个公共... 金融时序预测可以为从业人员提供行业变化趋势信息。采用多路延迟嵌入变换将时间序列转化为低秩块Hankel张量,利用Tucker分解将高阶张量投影到压缩核心张量中,对核心张量使用季节性差分自回归滑动平均算法实现对未来的预测。在4个公共数据集上验证了该算法与经典的XGBoost、VAR、SARIMA等算法相比具有更好的计算精度和更少的计算成本。 展开更多
关键词 多维金融时序预测 块Hankel张量 季节性差分自回归滑动平均算法 Tucker分解 多路延迟嵌入变换
在线阅读 下载PDF
无线传感器网络中缺失数据估计算法 被引量:2
12
作者 邱保志 甄倩倩 唐耀华 《计算机应用》 CSCD 北大核心 2013年第12期3457-3459,3464,共4页
为了提高无线传感器网络(WSN)中缺失数据估计值的精度,提出了一种自决策插值算法。该算法能够根据数据集的空间相关性以及缺失数据的连续性选择不同的缺失数据估计策略,并将自回归滑动平均(ARMA)模型引入到对缺失数据插值的研究中。与... 为了提高无线传感器网络(WSN)中缺失数据估计值的精度,提出了一种自决策插值算法。该算法能够根据数据集的空间相关性以及缺失数据的连续性选择不同的缺失数据估计策略,并将自回归滑动平均(ARMA)模型引入到对缺失数据插值的研究中。与传统缺失值估计算法相比,该算法不仅考虑到无线传感器网络的特性,而且考虑到数据集本身的特性。在真实数据集上测试结果表明,该算法提高了对缺失值估计的精度。 展开更多
关键词 无线传感器网络 缺失数据 插值算法 自回归滑动平均模型 空间相关性
在线阅读 下载PDF
基于TCN模型的软件系统老化预测框架
13
作者 王艳超 姚江毅 +1 位作者 李雄伟 刘林云 《计算机应用与软件》 北大核心 2025年第5期25-29,61,共6页
随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架... 随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架。采集可用内存数据作为框架的输入,经TCN模型进行预测,通过检查预测输出的内存与实际内存的平均误差评价模型的效率。与ARIMA模型和RNN(LSTM)模型预测结果进行对比表明,TCN模型对时间序列平稳性要求低、适应性更强,不存在梯度爆炸或消失的问题,对采集的老化数据预测效果最好。 展开更多
关键词 软件老化 时域卷积网络 老化预测框架 预测误差 差分自回归滑动平均模型 长短时记忆模型
在线阅读 下载PDF
基于改进的ARMA递推算法的低频振荡模式在线辨识 被引量:12
14
作者 陈刚 龚啸 +1 位作者 李军 古志明 《电力系统保护与控制》 EI CSCD 北大核心 2012年第1期12-17,49,共7页
为提高电力系统低频振荡现象的实时监测水平,提出采用一种基于自回归滑动平均模型的两段加权递推最小二乘算法进行低频振荡模式辨识,并通过估计ARMA谱的方法以提取低频振荡的主导模式。该改进算法先采用加权递推最小二乘算法拟合高阶AR... 为提高电力系统低频振荡现象的实时监测水平,提出采用一种基于自回归滑动平均模型的两段加权递推最小二乘算法进行低频振荡模式辨识,并通过估计ARMA谱的方法以提取低频振荡的主导模式。该改进算法先采用加权递推最小二乘算法拟合高阶AR模型单独得到白噪声估值,再将该估值用于常规加权递推最小二乘算法中,提高了算法参数辨识的精度和收敛速度。New-England 39节点系统的时域仿真测试验证了该改进算法对低频振荡模式辨识的有效性,并通过与常规加权递推最小二乘算法辨识效果的比较验证了该改进算法对低频振荡模式的辨识具有更好的精确性且提高了收敛速度。最后通过对某电网PMU实测数据的辨识分析,验证了该改进算法能够准确地辨识系统的低频振荡主导模式频率和阻尼比,具有实际的工程意义。 展开更多
关键词 自回归滑动平均模型 加权递推最小二乘算法 ARMA谱 低频振荡在线辨识 主导模式
在线阅读 下载PDF
基于K-means聚类粒子群算法的多点PV-DG日前分配计划 被引量:7
15
作者 李磊 王俊熙 +3 位作者 贺易 詹鹏 刘方方 汤弋 《高电压技术》 EI CAS CSCD 北大核心 2017年第4期1263-1270,共8页
针对光伏分布式电源(PV-DG)将大量接入配电网的场景,提出了基于K-means聚类粒子群算法(PSO)的PV-DG日前出力优化算法。该算法通过K-means聚类法根据PV-DG依次接入不同配电网的节点每小时网损的分析对节点进行分类,结合设计的分配公式初... 针对光伏分布式电源(PV-DG)将大量接入配电网的场景,提出了基于K-means聚类粒子群算法(PSO)的PV-DG日前出力优化算法。该算法通过K-means聚类法根据PV-DG依次接入不同配电网的节点每小时网损的分析对节点进行分类,结合设计的分配公式初始化并网节点的PV-DG出力,将此出力作为初始化粒子引入粒子群优化算中。将分时系数自回归滑动平均(ARMA)模型预测方法与常规ARMA预测方法进行了比较,仿真结果表明分时系数ARMA模型预测方法提高了预测精度;并将K-means聚类的粒子群算法与粒子群算法及模糊粒子群算法分别进行了比较,对比结果说明提出的优化方法进一步降低了网损。 展开更多
关键词 光伏分布式电源 自回归滑动平均 分时预测系数 基于K-means的粒子群优化算法 网损
在线阅读 下载PDF
基于时间序列季节分类模型的轨道交通客流短期预测 被引量:17
16
作者 唐继强 钟鑫伟 +1 位作者 刘健 李天瑞 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第7期31-38,60,共9页
轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和... 轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和季节时间序列;采用乘法季节自回归差分滑动平均模型建立客流季节分类模型;使用季节分类模型预测对应类型日期的客流。实验表明:季节分类模型既能有效预测轨道交通客流,又能较好地避免预测误差波动性问题。 展开更多
关键词 交通工程 客流短期预测 季节分类模型 时间序列 乘法季节自回归差分滑动平均模型
在线阅读 下载PDF
基于ARIMA-ANN预测模型的能量感知路由算法 被引量:2
17
作者 蔡钊 马林华 +1 位作者 宋博 唐红 《计算机工程与科学》 CSCD 北大核心 2015年第6期1064-1070,共7页
针对传统能量感知OLSR协议在减少传输功率消耗和均衡节点剩余能量之间不能兼顾的特点,提出了一种新型的基于剩余能量比例和传输功率消耗的OLSR路由协议OLSR_RC,它利用上述两方面的指标构造复合能量开销,并将其作为路由选择的度量值。在... 针对传统能量感知OLSR协议在减少传输功率消耗和均衡节点剩余能量之间不能兼顾的特点,提出了一种新型的基于剩余能量比例和传输功率消耗的OLSR路由协议OLSR_RC,它利用上述两方面的指标构造复合能量开销,并将其作为路由选择的度量值。在减小网络开销的同时,也防止了部分低电量节点的能量被快速耗尽,延长了网络的生存周期。此外,新路由还采用ARIMA-ANN组合能量预测模型对节点的剩余电量进行预测,降低了由于拓扑控制(TC)消息丢失对选择路由所造成的影响。这种新型路由协议在无线传感器网络领域有比较广阔的应用前景。 展开更多
关键词 OLSR路由 能量感知 复合能量开销 人工神经网络-自回归差分滑动平均组合模型
在线阅读 下载PDF
综合岭回归和SARIMA方法在桥梁健康监测数据分析中的应用 被引量:9
18
作者 谌桢文 常军 《科学技术与工程》 北大核心 2023年第20期8846-8853,共8页
桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补... 桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补传感器数据中的缺失值,确保桥梁监测数据的完整性。由于不同位置处相同类型传感器的相关性较强,首先利用岭回归(ridge regression,RR)解决共线性问题,建立各传感器数据之间的关联,并预测缺失数据。接着引入季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)方法,利用其样本外预测能力并结合岭回归方法预测桥梁未来运行数据。最后,将该方法应用于实桥中,验证了其有效性,为传感器数据填补以及预测桥梁未来状态提供了有效的预测模型。 展开更多
关键词 大数据 缺失数据填补 数据预测 回归(RR) 季节性差分自回归滑动平均(SARIMA)
在线阅读 下载PDF
基于聚类分析的滑动时均序列需水预测优化方法 被引量:8
19
作者 刘鑫 桑学锋 +1 位作者 常家轩 李子恒 《中国农村水利水电》 北大核心 2021年第9期199-205,共7页
针对城市用水周期性及波动性特点,依据深圳市47个水厂及10个行政区2015-2019年逐月的供用水序列,考虑产业结构、人口特征及水厂供水的时间变化因子,提出KMeans聚类算法和季节性滑动平均自回归(seasonal moving average autoregressive,S... 针对城市用水周期性及波动性特点,依据深圳市47个水厂及10个行政区2015-2019年逐月的供用水序列,考虑产业结构、人口特征及水厂供水的时间变化因子,提出KMeans聚类算法和季节性滑动平均自回归(seasonal moving average autoregressive,SMAAR)模型耦合方法,将水厂和行政区的时间序列进行聚类,分类别进行建模,预测2020年1-8月水厂及行政区的逐月供水数据,进而汇总出深圳市2020年1-8月的总供水数据,并与普通的自回归滑动平均(autore⁃gressive moving average,ARMA)模型对比。结果表明:建模对象范围越小预测结果的RE较小。SMAAR的性能比ARMA有显著提升,且在长期预报中依旧表现出较强的泛化能力,254 d逐日预测结果的平均相对误差只有0.08。本研究方法可为城市需水预测和供水调度管理提供支撑。 展开更多
关键词 深圳 KMeans 季节性滑动平均自回归 时间序列 自回归滑动平均 长期预报
在线阅读 下载PDF
蚁群算法分配权重的燃气日负荷组合预测模型 被引量:7
20
作者 周洲 焦文玲 +1 位作者 任乐梅 田兴浩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第6期177-183,共7页
为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得... 为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得在一个时段上的燃气日负荷预测精度好于各单一模型.首先对包含诸多随机和模糊等不确定因素的城镇燃气日负荷时变系统和各预测模型特点进行分析;然后确定岭回归分析(Ridge)、差分自回归积分滑动平均模型(ARIMA)、支持向量机回归(SVR)、极端梯度提升树(XGB)共4类单项日负荷预测模型,结合城镇燃气日负荷和模型的特点,分别给出每个模型各项参数的设置和模型的输入向量;用平均相对误差、均方根误差、灰色关联度、相关系数、Theil不等系数为评价准则计算出的综合评价指标剔除冗余模型,最后建立了蚁群算法权重分配的组合预测模型.预测实例表明,蚁群算法分配权重的燃气日负荷组合预测模型长期的综合预测效果要优于任意单项模型,相比于单一模型而言,组合预测模型的稳定性和容错率更高,具备较强的泛化能力. 展开更多
关键词 城镇燃气日负荷 组合预测 回归 差分自回归积分滑动平均 支持向量机回归 极端梯度提升树 蚁群算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部