期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
基于季节性差分整合移动平均自回归模型的城市公交短期客流预测 被引量:9
1
作者 李炜聪 潘福全 +3 位作者 胡盼 张丽霞 杨晓霞 杨金顺 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期308-314,共7页
为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本... 为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本,对非平稳的客流时间序列进行1阶7步差分处理,对差分后的数据进行平稳性检验;通过相对信息量计算,确定预测模型中未知参数,对差分处理后的时间序列进行标准化残差检验,检验结果为白噪声序列,得到周期为7的季节性差分整合移动平均自回归预测模型;利用预测模型对2019年7—12月公交客流量进行预测与误差分析。结果表明,模型预测的平均相对误差为4.02%,最大相对误差为8.36%,模型预测精度较高,适用于青岛市公交短期客流量预测。 展开更多
关键词 交通预测 短期客流预测 季节性差分整合移动平均自回归模型 城市公交 平稳性检验
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测 被引量:1
2
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
长沙市流行性腮腺炎季节性自回归移动平均模型预测研究 被引量:3
3
作者 刘琳玲 刘如春 +5 位作者 陈田木 张本忠 李亚曼 胡伟红 谢知 赵锦 《中国全科医学》 CAS 北大核心 2017年第2期187-190,共4页
目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016... 目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016年流行性腮腺炎发病数进行预测。结果 SARIMA(3,0,0)×(1,0,0)_(12)模型可以很好地拟合实际数据,模型的展开式为:Y_t=222.545+1.225Y_(t-1)-0.713Y_(t-2)+0.291Y_(t-3)+0.366Y_(t-12)-0.448Y_(t-13)+0.261Y_(t-14)-0.107Y_(t-15)+a_t。将验证数据与预测数据进行相关性分析,结果显示呈显著性相关(r=0.61,P<0.001)。SARIMA模型预测2016年长沙市全年发病数将达到3 032例,平均月病例数为253例。结论 SARIMA模型可以用于流行性腮腺炎发病数预测,长沙市2016年流行性腮腺炎疫情仍处于高发态势。 展开更多
关键词 流行性腮腺炎 时间序列 季节性自回归移动平均模型 预测
在线阅读 下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:6
4
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均自回归模型(ARIMA) 变分模态分解 自适应模糊神经网络
在线阅读 下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
5
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
在线阅读 下载PDF
差分自回归移动平均模型在南通市手足口病疫情预测中的应用 被引量:3
6
作者 练维 魏叶 +1 位作者 韩颖颖 帅小博 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期59-64,共6页
目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发... 目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发病率为验证数据进行验证,检验模型的预测效果。结果:2010—2019年南通市共报告手足口病90 766例,年平均发病率为124.36/10万,疫情有明显季节性,呈双峰特征,为夏季(5、6、7月)高峰和冬季(11、12月)次高峰;近年来南通市手足口病的病原谱以其他肠道病毒为主;利用ARIMA(1,0,1)(1,1,1)12模型,预测2019年7—12月手足口病发病率分别为7.08/10万、1.81/10万、3.74/10万、7.21/10万、10.71/10万和11.29/10万,与实际发病率相比,两者差异无统计学意义(Z=0.48,P=0.63)。结论:差分自回归移动平均模型能较好地预测手足口病的发病趋势,可用于短期的预警监测。 展开更多
关键词 差分自回归移动平均模型 手足口病 预测
在线阅读 下载PDF
差分自回归移动平均与广义回归神经网络组合模型在丙型肝炎月发病率中的预测应用 被引量:7
7
作者 刘红杨 刘洪庆 +1 位作者 李望晨 赵晶 《中国全科医学》 CAS 北大核心 2017年第2期182-186,共5页
目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝... 目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝炎月度发病率数据及山东省统计局发布的同期人口资料。对2004—2014年山东省丙型肝炎月发病率数据构建ARIMA模型,验证拟合精度并外推预测;将ARIMA模型拟合值作为GRNN模型的输入,实际值作为GRNN模型的输出,对样本进行训练和预测。比较单纯ARIMA模型和ARIMA-GRNN组合模型在丙型肝炎月发病率中的预测效果。结果 2004—2014年山东省丙型肝炎年均发病率为17.28/10万,并随着时间的推移呈上升趋势(Z=29.05,P<0.01)。ARIMA(1,2,1)模型预测2014年山东省丙型肝炎发病率与实际发病率基本一致,落在95%置信区间内,拟合效果较好。以ARIMA(1,2,1)模型拟合值作为GRNN模型的输入,丙型肝炎月发病率实际值作为GRNN模型的输出,取最优光滑因子0.12训练模型,ARIMA-GRNN组合模型预测的拟合值与实际值基本吻合。ARIMA模型和ARIMA-GRNN组合模型的平均误差率(MER)分别为16.87%、15.30%;决定系数(R^2)分别为0.53、0.60;平均绝对误差(MAE)分别为0.17、0.09;平均绝对百分误差(MAPE)分别为1.18、0.35。结论 ARIMA-GRNN组合模型对山东省丙型肝炎月发病率拟合及预测效果优于单纯ARIMA模型,具有较高的拟合精度,有较为广阔的应用前景,对于疫情预测工作有一定的实用性意义。 展开更多
关键词 丙型肝炎 发病率 预测 差分自回归移动平均模型 广义回归神经网络
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
8
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
基于差分自回归—随机森林的动车组轮对旋修策略优化研究 被引量:1
9
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
在线阅读 下载PDF
适合西藏地区的归一化植被指数预测模型构建及验证
10
作者 孟慧美 吴凌霄 +1 位作者 宣越健 米玛旺堆 《气候与环境研究》 北大核心 2025年第2期199-211,共13页
基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地... 基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地区植被覆盖率总体呈现不明显减少趋势;3个预测模型中,RF预测精度最高,其归一化均方根误差、平均绝对百分比误差、决定系数,分别达到了6.92%、4.04%、0.9;小波变换方法能有效提高模型预测精度;组合模型可以提高预测精度,其中误差倒数权重组合模型优于平均权重和方差倒数加权组合模型。因此可以利用RF等机器学习方法结合小波变换、组合模型在西藏地区进行NDVI预测,为生态环境保护和农牧业生产决策提供科学指导。 展开更多
关键词 归一化植被指数(NDVI)预测模型 随机森林(RF)方法 差分自回归移动平均(ARIMA)方法 Prophet方法 小波变换
在线阅读 下载PDF
基于平均移动自回归理论的中国进出口贸易实证研究
11
作者 谢沅潮 《统计与决策》 CSSCI 北大核心 2017年第5期153-156,共4页
文章通过对中国国际贸易进口和出口的数据分析,应用自回归滑动平均模型和条件异方差理论,对国际贸易进口的差分数据构建了6月份及8月份的自回归平均移动模型和,并应用进口增长率自回归平均移动-条件异方差模型对国际贸易出口增长率进行... 文章通过对中国国际贸易进口和出口的数据分析,应用自回归滑动平均模型和条件异方差理论,对国际贸易进口的差分数据构建了6月份及8月份的自回归平均移动模型和,并应用进口增长率自回归平均移动-条件异方差模型对国际贸易出口增长率进行了波动率和变化率的拟合估计。根据所拟合的模型,发现在8月份拟合的自回归平均移动-条件异方差模型下的国际贸易进口差分数据更接近实际的国际贸易差分数据,并且国际贸易进口增长率差分对出口增长率差分的波动率具有正向的作用。中国国际贸易进口具有滞后的时间效应,并且中国国际贸易进口差分波动率对出口差分有正向的溢出效应。 展开更多
关键词 国际贸易进出口 自回归平均移动-条件异方差理论 差分模型
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
12
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
Joinpoint回归模型及其在传染病流行趋势分析中的应用 被引量:156
13
作者 曾四清 《中国卫生统计》 CSCD 北大核心 2019年第5期787-791,共5页
时间序列数据趋势分析的经典方法包括移动平均模型、回归模型、差分自回归移动平均模型等,常用的回归模型包括线性模型、指数模型、对数模型等。传统回归分析主要反映全局数据总体趋势,可能无法揭示局部数据的特定趋势。因此,分段回归... 时间序列数据趋势分析的经典方法包括移动平均模型、回归模型、差分自回归移动平均模型等,常用的回归模型包括线性模型、指数模型、对数模型等。传统回归分析主要反映全局数据总体趋势,可能无法揭示局部数据的特定趋势。因此,分段回归模型应运而生[1],但如何分段又成为新的问题。Kim等提出的Joinpoint Regression(JPR)模型提供了解决方法[2]。近年来,JPR模型在癌症和慢性病流行病学趋势研究领域得到广泛应用. 展开更多
关键词 对数模型 局部数据 差分自回归移动平均模型 回归模型 线性模型 指数模型 全局数据 回归分析
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:4
14
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法 被引量:1
15
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:4
16
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:3
17
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:5
18
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型 被引量:2
19
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
20
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部