期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
基于季节性(差分整合)自回归移动平均模型的广西乙类传染病发病情况预测 被引量:1
1
作者 韦雪梅 杨晓祥 +2 位作者 韦雪芹 李娟 袁宗祥 《内科》 2023年第3期209-214,共6页
目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月... 目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月报告发病数据作为测试集对模型进行测试。结果广西乙类传染病的发病情况呈季节性规律,最优预测模型为SARIMA(3,1,3)(2,0,0)_(12),其预测效果平均相对误差为7.99%,预测发病例数95%CI均包含了实际发病例数。结论SARIMA(3,1,3)(2,0,0)_(12)模型能较好地拟合广西乙类传染病的发病情况,可用于疫情的短期监测。 展开更多
关键词 广西壮族自治区 乙类传染病 季节性(差分整合)自回归移动平均模型 疾病预测
在线阅读 下载PDF
自回归求和移动平均乘积季节模型在西安地区出生缺陷预测中的应用 被引量:11
2
作者 张丽 米白冰 +7 位作者 相晓妹 宋辉 董敏 张水平 章琦 王玲玲 屈鹏飞 党少农 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2017年第3期371-374,426,共5页
目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟... 目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟合数据进行比较,评价模型的预测性能,并预测西安市2016年的出生缺陷发生率。结果西安市出生缺陷的发生率具有一定的趋势及季节性,建立了ARIMA(0,0,1)(0,1,1)12乘积季节模型,利用2015年9月至12月拟合值与实际出生缺陷发生率比较,绝对误差的平均9.5,相对误差的平均0.084,提示ARIMA(0,0,1)(0,1,1)12乘积季节模型具有较佳的预测能力。预测2016年西安市出生缺陷发生率与2015年接近,总体略有抬升,但峰值下降。结论 ARIMA(0,0,1)(0,1,1)12乘积季节模型可用于西安市出生缺陷发生率的预测。 展开更多
关键词 出生缺陷 自回归求和移动平均乘积季节模型 预测
在线阅读 下载PDF
基于差分自回归—随机森林的动车组轮对旋修策略优化研究
3
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
在线阅读 下载PDF
基于ICEEMDAN分解的多维时间序列干旱预测模型性能评估
4
作者 韦余鑫 李巧 +3 位作者 卢春雷 陶洪飞 马合木江·艾合买提 姜有为 《灌溉排水学报》 2025年第3期94-103,共10页
【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自... 【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自回归差分移动平均模型(ARIMA)、门控循环单元网络(GRU)、长短期记忆网络(LSTM)、改进的完全自适应噪声集合经验模态分解ICEEMDAN-ARIMA、ICEEMDAN-GRU和ICEEMDAN-LSTM组合模型,利用6种预测模型对多时间尺度SPI进行预测,借助均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)对所有模型预测精度进行评价。【结果】6种模型的预测精度均随时间尺度的增加而逐步提高,在24个月时间尺度下达到最高;ICEEMDAN能有效平稳时间数据,提升模型预测精度;6种模型的预测性能排序为:ICEEMDAN-ARIMA>ICEEMDAN-GRU>ICEEMDAN-LSTM>ARIMA>GRU>LSTM。【结论】基于ICEEMDAN算法的组合模型在干旱预测中表现出色,其中ICEEMDAN-ARIMA模型优于其他单一及组合模型,最有利于干旱预测。 展开更多
关键词 ICEEMDAN 长短期记忆网络 差分自回归移动平均模型 门控循环单元网络 标准化降水指数
在线阅读 下载PDF
乘积季节ARIMA模型的建立及其在河南省甲型病毒性肝炎发病数预测中的应用 被引量:1
5
作者 李军 史鲁斌 肖占沛 《中国卫生产业》 2015年第23期26-28,36,共4页
目的建立乘积季节自回归移动平均(ARIMA)模型,观察其对河南省甲型病毒性肝炎(甲肝)疫情预测的可行性。方法利用河南省2008—2013年分月的甲肝疫情监测资料建立乘积季节ARIMA模型,利用2014年1—12月的甲肝疫情资料评价该模型的预测效能... 目的建立乘积季节自回归移动平均(ARIMA)模型,观察其对河南省甲型病毒性肝炎(甲肝)疫情预测的可行性。方法利用河南省2008—2013年分月的甲肝疫情监测资料建立乘积季节ARIMA模型,利用2014年1—12月的甲肝疫情资料评价该模型的预测效能。结果河南省2008—2013年甲肝发病呈现明显的季节效应,且发病数呈现逐年减少的趋势;乘积季节ARIMA(1,1,0)(2,1,2)模型能较好地拟合既往的甲肝报告病例数,且对2014年1—12月份按月报告的甲肝病例数的预测值与实际值基本吻合。结论乘积季节ARIMA模型能较好模拟、预测河南省甲肝的发病情况。 展开更多
关键词 自回归移动平均模型 乘积季节自回归移动平均模型 甲型病毒性肝炎 疾病预测
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
6
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于时间序列季节分类模型的轨道交通客流短期预测 被引量:16
7
作者 唐继强 钟鑫伟 +1 位作者 刘健 李天瑞 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第7期31-38,60,共9页
轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和... 轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和季节时间序列;采用乘法季节自回归差分滑动平均模型建立客流季节分类模型;使用季节分类模型预测对应类型日期的客流。实验表明:季节分类模型既能有效预测轨道交通客流,又能较好地避免预测误差波动性问题。 展开更多
关键词 交通工程 客流短期预测 季节分类模型 时间序列 乘法季节自回归差分滑动平均模型
在线阅读 下载PDF
基于SARIMA模型的城市热岛季节性时序预测研究 被引量:2
8
作者 管亚平 《科学技术创新》 2023年第7期111-114,共4页
针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表... 针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表明SARIMA模型的城市热岛季节性时序拟合和预测效果具有较高的可靠性和准确性。 展开更多
关键词 SARIMA模型 时序预测 地表温度 城市热岛 季节差分自回归移动平均模型
在线阅读 下载PDF
基于时间序列的季节性气温预测研究 被引量:4
9
作者 赵成兵 刘丹秀 +1 位作者 谢新平 刘静 《安徽建筑大学学报》 2022年第3期83-89,共7页
气温的变化受风速、湿度、日照时数等因素的影响,可以通过分析这些因素预测气温的变化情况。考虑到气温序列中存在季节特性,采用One-Hot编码方法提取气温序列中的季节性信息,并作为随机森林模型的输入特征,对月平均气温进行拟合与预测... 气温的变化受风速、湿度、日照时数等因素的影响,可以通过分析这些因素预测气温的变化情况。考虑到气温序列中存在季节特性,采用One-Hot编码方法提取气温序列中的季节性信息,并作为随机森林模型的输入特征,对月平均气温进行拟合与预测。由于模型构建时涉及众多超参数,文中利用随机搜索和网格搜索两种算法优化模型中的超参数。结果表明:考虑季节性的随机森林模型拟合效果优于简单随机森林模型,预测数据变化趋势与实际观测基本一致,拟合精度可以达到96.14%。经两种方法对超参数寻优之后,模型拟合精度可以达到96.45%。 展开更多
关键词 随机森林 自回归移动平均模型 平均温度 季节 PYTHON
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:2
10
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
11
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:1
12
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:2
13
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:4
14
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
基于ARIMA-PSO-LSTM的太阳能预测 被引量:1
15
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
在线阅读 下载PDF
基于ARIMA-IPOA-CNN-LSTM的太湖水体溶解氧浓度预测模型
16
作者 杨焕峥 崔业梅 +1 位作者 徐玲 薛洪惠 《水电能源科学》 北大核心 2024年第10期55-59,共5页
为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)... 为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)模型,分别从数据中学习空间和时间特征;再次,提出了一种改进的鹈鹕优化算法(IPOA)来优化模型参数,算法增加了Logistic混沌映射种群初始化、反向差分进化、萤火虫扰动的方法,CEC2005函数的测试结果显著优于传统鹈鹕优化算法;最后,将“剪枝”模型部署于STM32嵌入式设备。试验结果表明,在溶解氧浓度预测方面,该模型具有高的准确性和鲁棒性,为水环境保护提供了一种高效、可靠的解决方案。 展开更多
关键词 差分自回归移动平均 鹈鹕优化算法 卷积神经网络 水体 溶解氧浓度
在线阅读 下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
17
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
在线阅读 下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
18
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
在线阅读 下载PDF
基于SARIMA-GS-SVR组合模型的短期电力需求预测 被引量:3
19
作者 刘晗 王万雄 《电子科技》 2022年第8期58-65,共8页
短期电力需求预测在合理分配电力利用、减少能源浪费和增强电力系统的并网运行方面具有重要作用。应用单一的季节自回归移动平均模型对电力需求预测将限制预测精度。为了提高SARIMA的预测精度,文中提出了SARIMA-GS-SVR组合预测模型。采... 短期电力需求预测在合理分配电力利用、减少能源浪费和增强电力系统的并网运行方面具有重要作用。应用单一的季节自回归移动平均模型对电力需求预测将限制预测精度。为了提高SARIMA的预测精度,文中提出了SARIMA-GS-SVR组合预测模型。采用网格搜索算法将SARIMA预测的残差带入支持向量回归模型进行参数训练,并将寻优的最佳参数带入SVR对残差进行预测。将得到的残差预测结果和SARIMA预测结果加和进行综合分析。建立SARIMA、SVR、GS-SVR和SARIMA-GS-SVR预测模型,以加利福尼亚州电力需求历史数据为例,对该地某日24 h的电力需求进行预测。为了体现模型整体的优越性,选用指数平滑法作为无关基准模型进行实验对比。实验结果表明,相比SARIMA,SARIMA-GS-SVR的预测精度提高了29.1812%,且其MAE、MAPE和RMSE3种误差指标评价值低于其它4种模型。 展开更多
关键词 电力需求预测 残差预测 预测精度 季节差分自回归移动平均 网格搜索算法 支持向量回归 指数平滑法 参数寻优
在线阅读 下载PDF
基于LCC理论的电网损耗及其传导模型 被引量:6
20
作者 蒋利民 韩永霞 +3 位作者 黄伟 闫华光 戴栋 李立浧 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期55-62,共8页
全寿命周期成本(LCC)分析是全寿命周期管理理念的核心.文中针对电网及其主设备开展了LCC精细化模型研究,在LCC模型中增加了损耗传导成本项,并引入了基于通货膨胀率预测的经济学修正方法.基于电网的特点(即总损耗的增加会引起发电侧成本... 全寿命周期成本(LCC)分析是全寿命周期管理理念的核心.文中针对电网及其主设备开展了LCC精细化模型研究,在LCC模型中增加了损耗传导成本项,并引入了基于通货膨胀率预测的经济学修正方法.基于电网的特点(即总损耗的增加会引起发电侧成本的增加、下级电网损耗的增加会导致上级电网建设综合投资增加),提出了电网损耗传导模型,并研究了损耗传导成本在LCC中占比的计算方法.通货膨胀率预测采用差分自回归移动平均模型.以典型电网为例,基于上述LCC模型研究分析了电网各环节的损耗分布,提出了配电网节能的必要性和重要性.最后开展了损耗传导成本对电网LCC计算结果影响的实例分析,验证了损耗传导模型的实用性和工程应用价值. 展开更多
关键词 全寿命周期成本 损耗传导模型 电网损耗分布 差分自回归移动平均模型
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部