期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于频谱及轴心轨迹图的汽轮机故障诊断 被引量:1
1
作者 高俊如 孙亚军 班牧原 《热力发电》 CAS 北大核心 2014年第8期140-142,146,共4页
采用频谱及轴心轨迹图的方法提取仿真台得到的故障振动信号特征,分别建立子BP神经网络,并采用D-S证据理论对子BP神经网络的输出进行融合(多层信息融合)方法,从不同侧面对故障进行诊断。结果表明:采用多层信息融合方法的故障诊断置信度... 采用频谱及轴心轨迹图的方法提取仿真台得到的故障振动信号特征,分别建立子BP神经网络,并采用D-S证据理论对子BP神经网络的输出进行融合(多层信息融合)方法,从不同侧面对故障进行诊断。结果表明:采用多层信息融合方法的故障诊断置信度比频谱方法提高约0.03,比轴心轨迹图方法提高0.4,效果显著;对故障类型的识别准确率具有显著提高。 展开更多
关键词 汽轮机 故障诊断 频谱 轴心轨迹 子bp神经网络 D-S证据理 多层信息融合 置信度
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
2
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部