A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard...Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems.展开更多
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance...To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.展开更多
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which...Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic...A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppr...As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.展开更多
A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iterati...A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems ofte...Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology.展开更多
A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The fac...A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金Projects(41874145,72088101)supported by the National Natural Science Foundation of China。
文摘Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems.
基金Project(52005358)supported by the National Natural Science Foundation of ChinaProject(2018YFB1307902)supported by the National Key R&D Program of China+1 种基金Project(201901D111243)supported by the Natural Science Foundation of Shanxi Province,ChinaProject(2019-KF-25-05)supported by the Natural Science Foundation of Liaoning Province,China。
文摘To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
基金Project(NS2013091)supported by the Basis Research Fund of Nanjing University of Aeronautics and Astronautics,China
文摘Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
文摘A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.
基金Project(2018YFB2002100)supported by the National Key R&D Program of China。
文摘As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.
基金Project(50874064) supported by the National Natural Science Foundation of ChinaKey Project(Z2007F10) supported by the Natural Science Foundation of Shandong Province,China
文摘A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of ChinaProjects(012BAF10B11,2012BAF10B06)supported by the National Key Technologies R&D Program of China+1 种基金Project(F11-264-1-08)supported by the Shenyang Science and Technology Project,ChinaProject(2011BY100383)supported by the Cooperation Project of Foshan and Chinese Academy of Sciences
文摘Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology.
基金supported by the Ministry of Higher Education, Malaysia (Grant No.UKM-AP-PLW-04-2009/2)
文摘A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.