On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engin...On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.展开更多
Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise f...Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.展开更多
PRINCE is a 64-bit lightweight block cipher with a 128-bit key published at ASIACRYPT 2012. Assuming one nibble fault is injected, previous different fault analysis(DFA) on PRINCE adopted the technique from DFA on AES...PRINCE is a 64-bit lightweight block cipher with a 128-bit key published at ASIACRYPT 2012. Assuming one nibble fault is injected, previous different fault analysis(DFA) on PRINCE adopted the technique from DFA on AES and current results are different. This paper aims to make a comprehensive study of algebraic fault analysis(AFA) on PRINCE. How to build the equations for PRINCE and faults are explained. Extensive experiments are conducted. Under nibble-based fault model, AFA with three or four fault injections can succeed within 300 seconds with a very high probability. Under other fault models such as byte-based, half word-based, word-based fault models, the faults become overlapped in the last round and previous DFAs are difficult to work. Our results show that AFA can still succeed to recover the full master key. To evaluate security of PRINCE against fault attacks, we utilize AFA to calculate the reduced entropy of the secret key for given amount of fault injections. The results can interpret and compare the efficiency of previous work. Under nibble-based fault model, the master key of PRINCE can be reduced to 29.69 and 236.10 with 3 and 2 fault injections on average, respectively.展开更多
文摘On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.
基金Projects 50504015 supported by the National Natural Science Foundation of ChinaOC4499 by the Science Technology Foundation of China University ofMining & Technology
文摘Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.
基金supported in part by the Major State Basic Research Development Program (973 Plan) of China under thegrant 2013CB338004the National Natural Science Foundation of China under the grants 61173191, 61271124, 61272491, 61309021, 61472357+1 种基金by the Zhejiang Provincial Natural Science Foundation of China under the grant LY13F010001by the Fundamental Research Funds for the Central Universities under the grant 2015QNA5005
文摘PRINCE is a 64-bit lightweight block cipher with a 128-bit key published at ASIACRYPT 2012. Assuming one nibble fault is injected, previous different fault analysis(DFA) on PRINCE adopted the technique from DFA on AES and current results are different. This paper aims to make a comprehensive study of algebraic fault analysis(AFA) on PRINCE. How to build the equations for PRINCE and faults are explained. Extensive experiments are conducted. Under nibble-based fault model, AFA with three or four fault injections can succeed within 300 seconds with a very high probability. Under other fault models such as byte-based, half word-based, word-based fault models, the faults become overlapped in the last round and previous DFAs are difficult to work. Our results show that AFA can still succeed to recover the full master key. To evaluate security of PRINCE against fault attacks, we utilize AFA to calculate the reduced entropy of the secret key for given amount of fault injections. The results can interpret and compare the efficiency of previous work. Under nibble-based fault model, the master key of PRINCE can be reduced to 29.69 and 236.10 with 3 and 2 fault injections on average, respectively.