基于传统半桥子模块(half bridge sub-module,HBSM)的模块化多电平换流器(modular multilevel converter,MMC)无法阻断直流侧短路故障电流,该故障电流降低了MMC高压直流输电系统(MMC based high voltage direct current,MMC-HVDC)的可...基于传统半桥子模块(half bridge sub-module,HBSM)的模块化多电平换流器(modular multilevel converter,MMC)无法阻断直流侧短路故障电流,该故障电流降低了MMC高压直流输电系统(MMC based high voltage direct current,MMC-HVDC)的可靠性。以2个HBSM为基本结构,研究设计一种能够有效阻断直流故障电流的新型旁路型子模块,即二极管钳位型双半桥子模块(diode clamp dual half bridge sub-module,DCDHBSM)。相较于具备直流短路电流阻断能力的其他子模块,所提DCDHBSM所需功率器件较少,运行损耗较低。此外,还设计适用于DCDHBSM的直流故障穿越策略,利用排序算法均衡了故障后的子模块电容电压。MATLAB/Simulink和物理仿真试验结果均证明了装配所提DCDHBSM的MMC在快速阻断直流故障电流及实现故障穿越等方面的有效性。展开更多
模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput paralle...模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput parallel,ISOP)型MMC-SST具有较高的功率密度,但是在中压直流(medium voltage DC,MVDC)端口短路故障情况下无法持续向低压侧供电;双向有源全桥变换器(dualactive bridge,DAB)型MMC-SST则存在功率密度低、成本高等问题,并且传统的半桥结构的DAB型MMC-SST在MVDC端口短路故障情况下同样无法持续向低压侧供电。文章提出了一种子模块桥臂复用(arm integrated submodule,AISM)型MMC-SST拓扑,在不改变MMC-SST端口电气特性的情况下,在有效减少开关器件数量的同时,还使得SST具备中压直流端口短路故障下的不间断运行能力,进而提升SST的功率密度和供电可靠性。针对文中提出的AISM型MMCSST拓扑,该文还提出了一种针对输入级MMC的混频调制方法,基于共模、差模解耦原理,实现输入级MMC桥臂电压的高频分量和低频分量的解耦。通过理论分析与仿真模拟,验证了所提拓扑及控制方法的可行性。展开更多
模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑...模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑制子模块电容电压纹波,需使用较大电容值的子模块电容,其显著增加系统的硬件成本和体积。该文提出一种基于器件复用的有源功率解耦型FB-SM(FB-SM with active power decoupling,APD-SM),通过子模块中的器件复用,使其兼具电容电压纹波抑制和直流故障穿越能力,同时不改变MMC拓扑的外输出特性。相较于传统FB-SM拓扑,该拓扑可在全功率因数范围内显著抑制子模块电容电压纹波;详细介绍该拓扑的推演规律、运行原理、调制方法和控制策略,并对拓扑结构中的关键参数进行分析和设计,从多方面与传统FB-SM拓扑进行对比分析;最后,基于PLECS仿真平台搭建APD-SM和FB-SM型MMC仿真模型(分别缩写为APD-MMC和FB-MMC),并基于样机模型进行实验验证。仿真和实验结果验证该拓扑和控制策略的有效性。展开更多
文摘基于传统半桥子模块(half bridge sub-module,HBSM)的模块化多电平换流器(modular multilevel converter,MMC)无法阻断直流侧短路故障电流,该故障电流降低了MMC高压直流输电系统(MMC based high voltage direct current,MMC-HVDC)的可靠性。以2个HBSM为基本结构,研究设计一种能够有效阻断直流故障电流的新型旁路型子模块,即二极管钳位型双半桥子模块(diode clamp dual half bridge sub-module,DCDHBSM)。相较于具备直流短路电流阻断能力的其他子模块,所提DCDHBSM所需功率器件较少,运行损耗较低。此外,还设计适用于DCDHBSM的直流故障穿越策略,利用排序算法均衡了故障后的子模块电容电压。MATLAB/Simulink和物理仿真试验结果均证明了装配所提DCDHBSM的MMC在快速阻断直流故障电流及实现故障穿越等方面的有效性。
文摘模块化多电平换流器(modular multilevel converter,MMC)近年来得到了广泛的发展与应用。电容器是MMC中子模块(sub-module,SM)的重要组成部分与关键元件,承担直流支撑与储能工作。为保证MMC系统的安全可靠运行,有必要对子模块电容器状态监测方法展开研究。基于MMC系统运行特性,提出一种在工频周期内对子模块电压进行多相位点采样,并结合系统控制侧开关信号、调制比与交流侧电流电压幅值、相位等信息构建电压电流状态方程,以求解电容值与等效串联电阻(equivalent series resistance,ESR)值等状态特征参量的子模块电容器状态监测方法。随后搭建单相七电平MMC系统仿真平台与半实物仿真平台,对上述方法的可行性与准确性进行验证。仿真结果表明子模块电容器C值监测误差绝对值小于0.03%,ESR值监测误差绝对值小于0.5%。实验结果表明C值监测误差绝对值小于1.5%,ESR值监测误差小于10%,满足子模块电容器状态监测要求。
文摘模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput parallel,ISOP)型MMC-SST具有较高的功率密度,但是在中压直流(medium voltage DC,MVDC)端口短路故障情况下无法持续向低压侧供电;双向有源全桥变换器(dualactive bridge,DAB)型MMC-SST则存在功率密度低、成本高等问题,并且传统的半桥结构的DAB型MMC-SST在MVDC端口短路故障情况下同样无法持续向低压侧供电。文章提出了一种子模块桥臂复用(arm integrated submodule,AISM)型MMC-SST拓扑,在不改变MMC-SST端口电气特性的情况下,在有效减少开关器件数量的同时,还使得SST具备中压直流端口短路故障下的不间断运行能力,进而提升SST的功率密度和供电可靠性。针对文中提出的AISM型MMCSST拓扑,该文还提出了一种针对输入级MMC的混频调制方法,基于共模、差模解耦原理,实现输入级MMC桥臂电压的高频分量和低频分量的解耦。通过理论分析与仿真模拟,验证了所提拓扑及控制方法的可行性。
文摘模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑制子模块电容电压纹波,需使用较大电容值的子模块电容,其显著增加系统的硬件成本和体积。该文提出一种基于器件复用的有源功率解耦型FB-SM(FB-SM with active power decoupling,APD-SM),通过子模块中的器件复用,使其兼具电容电压纹波抑制和直流故障穿越能力,同时不改变MMC拓扑的外输出特性。相较于传统FB-SM拓扑,该拓扑可在全功率因数范围内显著抑制子模块电容电压纹波;详细介绍该拓扑的推演规律、运行原理、调制方法和控制策略,并对拓扑结构中的关键参数进行分析和设计,从多方面与传统FB-SM拓扑进行对比分析;最后,基于PLECS仿真平台搭建APD-SM和FB-SM型MMC仿真模型(分别缩写为APD-MMC和FB-MMC),并基于样机模型进行实验验证。仿真和实验结果验证该拓扑和控制策略的有效性。