期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能计算技术的历史性突破与巨大挑战
1
作者 李国杰 《集成技术》 2025年第1期1-8,共8页
主流的人工智能技术从一个侧面可以看成是“智能计算技术”。该文针对智能计算技术取得的历史性突破、发展趋势和面临的挑战发表一些看法;对规模定律(scaling law)是否遇到天花板、解决算力短缺问题的出路在哪里、大模型的本质是什么等... 主流的人工智能技术从一个侧面可以看成是“智能计算技术”。该文针对智能计算技术取得的历史性突破、发展趋势和面临的挑战发表一些看法;对规模定律(scaling law)是否遇到天花板、解决算力短缺问题的出路在哪里、大模型的本质是什么等普遍关心的问题作简要的综述。 展开更多
关键词 智能计算 人工智能 大模型 规模定律 算力 好数据 可解释性
在线阅读 下载PDF
QoS Evaluation for Web Service Recommendation 被引量:1
2
作者 MA You XIN Xin +3 位作者 WANG Shangguang LI Jinglin SUN Qibo YANG Fangchun 《China Communications》 SCIE CSCD 2015年第4期151-160,共10页
Web service recommendation is one of the most important fi elds of research in the area of service computing. The two core problems of Web service recommendation are the prediction of unknown Qo S property values and ... Web service recommendation is one of the most important fi elds of research in the area of service computing. The two core problems of Web service recommendation are the prediction of unknown Qo S property values and the evaluation of overall Qo S according to user preferences. Aiming to address these two problems and their current challenges, we propose two efficient approaches to solve these problems. First, unknown Qo S property values were predicted by modeling the high-dimensional Qo S data as tensors, by utilizing an important tensor operation, i.e., tensor composition, to predict these Qo S values. Our method, which considers all Qo S dimensions integrally and uniformly, allows us to predict multi-dimensional Qo S values accurately and easily. Second, the overall Qo S was evaluated by proposing an efficient user preference learning method, which learns user preferences based on users' ratings history data, allowing us to obtain user preferences quantifiably and accurately. By solving these two core problems, it became possible to compute a realistic value for the overall Qo S. The experimental results showed our proposed methods to be more efficient than existing methods. 展开更多
关键词 Web service recommendation QoS prediction user preference overall QoSevaluation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部