期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SVD-Schmidt正交化的压缩感知测量矩阵的优化
1
作者
王月
覃亚丽
《高技术通讯》
CAS
北大核心
2024年第10期1046-1057,共12页
压缩感知(CS)理论中测量矩阵的性能优劣直接影响信号重构性能。为了优化测量矩阵提高其重构性能,本文提出了一种基于奇异值分解-施密特(SVD-Schmidt)正交化的CS测量矩阵优化方法。首先对测量矩阵进行奇异值分解(SVD)并选择最大的奇异值...
压缩感知(CS)理论中测量矩阵的性能优劣直接影响信号重构性能。为了优化测量矩阵提高其重构性能,本文提出了一种基于奇异值分解-施密特(SVD-Schmidt)正交化的CS测量矩阵优化方法。首先对测量矩阵进行奇异值分解(SVD)并选择最大的奇异值替换原来的奇异值形成新的矩阵,同时对其进行施密特正交化,对矩阵的列进行单位化,通过行和列不断循环交替自适应迭代优化得到优化后的测量矩阵。通过一维信号和二维图像的仿真实验验证所提方法的优越性。一方面,本文方法优化的测量矩阵互相关性明显降低;另一方面,实验仿真结果证明了测量矩阵经过优化之后提高了信号重构性能,本文方法重构性能优于现有的SVD法和特征值分解法。
展开更多
关键词
压缩感知(CS)
测量矩阵
互相关性
奇异
值
分解
-
施密特
(
svd-schmidt
)
正
交
化
迭代优
化
在线阅读
下载PDF
职称材料
题名
基于SVD-Schmidt正交化的压缩感知测量矩阵的优化
1
作者
王月
覃亚丽
机构
浙江工业大学信息工程学院
出处
《高技术通讯》
CAS
北大核心
2024年第10期1046-1057,共12页
基金
国家自然科学基金(61675184)资助项目。
文摘
压缩感知(CS)理论中测量矩阵的性能优劣直接影响信号重构性能。为了优化测量矩阵提高其重构性能,本文提出了一种基于奇异值分解-施密特(SVD-Schmidt)正交化的CS测量矩阵优化方法。首先对测量矩阵进行奇异值分解(SVD)并选择最大的奇异值替换原来的奇异值形成新的矩阵,同时对其进行施密特正交化,对矩阵的列进行单位化,通过行和列不断循环交替自适应迭代优化得到优化后的测量矩阵。通过一维信号和二维图像的仿真实验验证所提方法的优越性。一方面,本文方法优化的测量矩阵互相关性明显降低;另一方面,实验仿真结果证明了测量矩阵经过优化之后提高了信号重构性能,本文方法重构性能优于现有的SVD法和特征值分解法。
关键词
压缩感知(CS)
测量矩阵
互相关性
奇异
值
分解
-
施密特
(
svd-schmidt
)
正
交
化
迭代优
化
Keywords
compressed sensing(CS)
measurement matrix
coherence
singular value decomposition
-
Schmidt(
svd-schmidt
)orthogonalization
iterative optimization
分类号
TN911.7 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SVD-Schmidt正交化的压缩感知测量矩阵的优化
王月
覃亚丽
《高技术通讯》
CAS
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部