针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更...针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.展开更多
为进一步研究故障电弧特征,针对三相电动机及变频器负载开展了串联故障电弧实验。首先将电流信号经过一阶差分预处理,再通过奇异值分解SVD(singular value decomposition)对信号进行两级滤波,剔除信号中的工频和噪声成分。采用柯尔莫可...为进一步研究故障电弧特征,针对三相电动机及变频器负载开展了串联故障电弧实验。首先将电流信号经过一阶差分预处理,再通过奇异值分解SVD(singular value decomposition)对信号进行两级滤波,剔除信号中的工频和噪声成分。采用柯尔莫可洛夫-斯米洛夫K-S(Kolmogorov-Smirnov)检验法分析SVD滤波信号的正态分布情况。采用线性调频Z变换CZT(chirp-Z transform)对SVD滤波信号0~500 Hz频段进行频谱细化分析。提取时域峭度和特征频段幅值平均值组成特征向量,并构建故障电弧区矩形。通过大量数据测试表明:该方法可有效识别三相电动机及变频器负载回路中发生的故障电弧。展开更多
文摘针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.
文摘为进一步研究故障电弧特征,针对三相电动机及变频器负载开展了串联故障电弧实验。首先将电流信号经过一阶差分预处理,再通过奇异值分解SVD(singular value decomposition)对信号进行两级滤波,剔除信号中的工频和噪声成分。采用柯尔莫可洛夫-斯米洛夫K-S(Kolmogorov-Smirnov)检验法分析SVD滤波信号的正态分布情况。采用线性调频Z变换CZT(chirp-Z transform)对SVD滤波信号0~500 Hz频段进行频谱细化分析。提取时域峭度和特征频段幅值平均值组成特征向量,并构建故障电弧区矩形。通过大量数据测试表明:该方法可有效识别三相电动机及变频器负载回路中发生的故障电弧。