基于奇异值分解(singular value decomposition,SVD)和最小二乘支持向量机(least square support vector machine,LS-SVM)提出电能质量扰动类型识别的新方法。通过对电能质量扰动信号的小波包变换系数矩阵进行奇异值分解,将基频、扰动...基于奇异值分解(singular value decomposition,SVD)和最小二乘支持向量机(least square support vector machine,LS-SVM)提出电能质量扰动类型识别的新方法。通过对电能质量扰动信号的小波包变换系数矩阵进行奇异值分解,将基频、扰动频率分量、噪声分解到不同的正交特征子空间。再与正常电压信号的奇异值作比值以抵消噪声能量的影响,最大限度地体现出扰动类型间的细微差别,以此作为扰动特征向量,作为最小二乘支持向量机分类器的输入参数,来实现电能质量扰动类型的识别。仿真结果表明,该方法识别准确率高,受噪声影响小,算法稳定性好。展开更多
为了实现炉内温度场的实时在线监测,阐述了基于声学理论的三维温度场重建原理,介绍了奇异值分解(singular value decomposition,SVD)算法。采用最小二乘法和SVD算法分别对炉膛火焰分布的几种典型模型:单峰模型、双峰模型以及四峰模型,...为了实现炉内温度场的实时在线监测,阐述了基于声学理论的三维温度场重建原理,介绍了奇异值分解(singular value decomposition,SVD)算法。采用最小二乘法和SVD算法分别对炉膛火焰分布的几种典型模型:单峰模型、双峰模型以及四峰模型,进行了仿真重建,并对两种算法的仿真结果做了比较。仿真得到了稳定的重建结果,给出了不同温度场分布模型及其重建图像,分析了重建误差。仿真结果表明,两种算法均可用于炉膛三维温度场重建,并且具有一定的抗干扰能力,与最小二乘法相比,奇异值分解算法具有更好的稳定性。展开更多
将总体最小二乘-旋转矢量不变技术(total leastsquares-estimation of signal parameters via rotational invariance technique,TLS-ESPRIT)引入到电压闪变参数的求取中,闪变参数的提取可转化为求取一系列边频分量参数的问题。对于电...将总体最小二乘-旋转矢量不变技术(total leastsquares-estimation of signal parameters via rotational invariance technique,TLS-ESPRIT)引入到电压闪变参数的求取中,闪变参数的提取可转化为求取一系列边频分量参数的问题。对于电压信号数据形成的HANKEL矩阵,通过奇异值分解进行信号子空间和噪声子空间的划分,通过TLS的再次消噪和抗干扰处理,提高闪变参数的提取精度。仿真结果表明,对于含噪声、谐波和多调幅的电压闪变信号,该方法具有较高的精度。实例分析进一步验证了该方法的可行性和有效性。展开更多
总体最小二乘估计能够同时顾及线性模型中系数矩阵A和观测向量L的误差,平差理论相对更为严密。如果系数矩阵A的部分元素没有误差,这种总体最小二乘模型为混合总体最小二乘模型。针对混合总体最小二乘(Least squares-total least squares...总体最小二乘估计能够同时顾及线性模型中系数矩阵A和观测向量L的误差,平差理论相对更为严密。如果系数矩阵A的部分元素没有误差,这种总体最小二乘模型为混合总体最小二乘模型。针对混合总体最小二乘(Least squares-total least squares,LS-TLS)解算问题,应用测量平差中的原理和方法,推导了混合总体最小二乘的迭代逼近解算公式,通过与奇异值分解法分析比较,分析了两种解算方法具有等价性,最后通过实验数据分析得出迭代算法的有效性和合理性。展开更多
文摘基于奇异值分解(singular value decomposition,SVD)和最小二乘支持向量机(least square support vector machine,LS-SVM)提出电能质量扰动类型识别的新方法。通过对电能质量扰动信号的小波包变换系数矩阵进行奇异值分解,将基频、扰动频率分量、噪声分解到不同的正交特征子空间。再与正常电压信号的奇异值作比值以抵消噪声能量的影响,最大限度地体现出扰动类型间的细微差别,以此作为扰动特征向量,作为最小二乘支持向量机分类器的输入参数,来实现电能质量扰动类型的识别。仿真结果表明,该方法识别准确率高,受噪声影响小,算法稳定性好。
文摘为了实现炉内温度场的实时在线监测,阐述了基于声学理论的三维温度场重建原理,介绍了奇异值分解(singular value decomposition,SVD)算法。采用最小二乘法和SVD算法分别对炉膛火焰分布的几种典型模型:单峰模型、双峰模型以及四峰模型,进行了仿真重建,并对两种算法的仿真结果做了比较。仿真得到了稳定的重建结果,给出了不同温度场分布模型及其重建图像,分析了重建误差。仿真结果表明,两种算法均可用于炉膛三维温度场重建,并且具有一定的抗干扰能力,与最小二乘法相比,奇异值分解算法具有更好的稳定性。
文摘将总体最小二乘-旋转矢量不变技术(total leastsquares-estimation of signal parameters via rotational invariance technique,TLS-ESPRIT)引入到电压闪变参数的求取中,闪变参数的提取可转化为求取一系列边频分量参数的问题。对于电压信号数据形成的HANKEL矩阵,通过奇异值分解进行信号子空间和噪声子空间的划分,通过TLS的再次消噪和抗干扰处理,提高闪变参数的提取精度。仿真结果表明,对于含噪声、谐波和多调幅的电压闪变信号,该方法具有较高的精度。实例分析进一步验证了该方法的可行性和有效性。
文摘总体最小二乘估计能够同时顾及线性模型中系数矩阵A和观测向量L的误差,平差理论相对更为严密。如果系数矩阵A的部分元素没有误差,这种总体最小二乘模型为混合总体最小二乘模型。针对混合总体最小二乘(Least squares-total least squares,LS-TLS)解算问题,应用测量平差中的原理和方法,推导了混合总体最小二乘的迭代逼近解算公式,通过与奇异值分解法分析比较,分析了两种解算方法具有等价性,最后通过实验数据分析得出迭代算法的有效性和合理性。