期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLO v3与图结构模型的群养猪只头尾辨别方法 被引量:9
1
作者 李泊 沈明霞 +2 位作者 刘龙申 陆明洲 孙玉文 《农业机械学报》 EI CAS CSCD 北大核心 2020年第7期44-51,共8页
在利用视频监控技术对群养猪只进行自动行为监测时,对猪只准确定位并辨别其头尾位置对提高监测水平至关重要,基于此提出一种基于YOLO v3(You only look once v3)模型与图结构模型(Pictorial structure models)的猪只头尾辨别方法。首先... 在利用视频监控技术对群养猪只进行自动行为监测时,对猪只准确定位并辨别其头尾位置对提高监测水平至关重要,基于此提出一种基于YOLO v3(You only look once v3)模型与图结构模型(Pictorial structure models)的猪只头尾辨别方法。首先,利用基于深度卷积神经网络的YOLO v3目标检测模型,训练猪只整体及其头部和尾部3类目标的检测器,从而在输入图像中获得猪只整体及头尾部所有的检测结果;然后,引入图结构模型,描述猪只的头尾结构特征,对每个猪只整体检测矩形框内的头尾部位组合计算匹配得分,选择最优的部位组合方式;对部分部位漏检的情况,采取阈值分割与前景椭圆拟合的方法,根据椭圆长轴推理出缺失部位。在实际猪场环境下,通过俯拍获得猪舍监控视频,建立了图像数据集,并进行了检测实验。实验结果表明,与直接利用YOLO v3模型相比,本文方法对头尾定位的精确率和召回率均有一定提高。本文方法对猪只头尾辨别精确率达到96.22%,与其他方法相比具有明显优势。 展开更多
关键词 猪只 行为识别 头尾辨别 深度卷积神经网络 图结构模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部