期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于天牛须优化算法的相关向量机边坡稳定性分析 被引量:1
1
作者 张研 唐北昌 孟庆鹏 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期11-17,36,共8页
为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射... 为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射关系;采用BAS算法对RVM模型参数进行优化,提出了基于BAS算法的RVM边坡稳定性分析优化模型;并将该模型应用于京新高速公路的边坡稳定性分析。分析结果表明:与实际值相比,基于BAS-RVM模型的最大绝对值相对误差为3.90%;在相同学习样本下,与RVM模型、支持向量机(support vector machine,SVM)模型和径向基函数(radical basis function,RBF)模型的预测值相比,BAS-RVM模型预测结果的可信度和拟合度更好、精度更高,其平均绝对值误差(mean absolute error,EMA)、均方根误差(root mean square error,ERMS)、相对均方误差(relative root mean square error,ERRMS)远低于其他3种模型。 展开更多
关键词 岩土工程 天牛须优化算法(BAS) 相关向量机(RVM) 预测模型 边坡
在线阅读 下载PDF
自适应天牛须优化与K均值聚类的图像分割算法研究 被引量:4
2
作者 向长峰 王宸 张秀峰 《制造技术与机床》 北大核心 2020年第5期99-101,共3页
在机器识别中,图像分割是重要的一个步骤,传统分割手段存在一定缺陷。针对传统K均值聚类分割的初始聚类中心敏感的缺陷进行了优化,利用自适应天牛须优化算法,避免了这一问题。通过实验结果表明,该算法(ABASK)对图像进行分割,既可以保证... 在机器识别中,图像分割是重要的一个步骤,传统分割手段存在一定缺陷。针对传统K均值聚类分割的初始聚类中心敏感的缺陷进行了优化,利用自适应天牛须优化算法,避免了这一问题。通过实验结果表明,该算法(ABASK)对图像进行分割,既可以保证图像轮廓的分割,同时还可以更多地保留图像细节。 展开更多
关键词 图像分割 K均值聚类算法 天牛须优化算法 标准粒子群算法
在线阅读 下载PDF
基于BAS-IMOPSO算法的风电系统储能优化配置 被引量:15
3
作者 朱娟娟 段奕琳 +1 位作者 闫群民 李召 《电力工程技术》 北大核心 2023年第2期180-187,共8页
风力发电作为一种清洁的可再生能源,在电力系统中应用广泛,但风电出力的随机波动性会对电力系统电能质量产生不利影响。储能系统(energy storage system,ESS)因其灵活的双向调节能力被用于平抑风电接入系统带来的电压与功率波动问题。... 风力发电作为一种清洁的可再生能源,在电力系统中应用广泛,但风电出力的随机波动性会对电力系统电能质量产生不利影响。储能系统(energy storage system,ESS)因其灵活的双向调节能力被用于平抑风电接入系统带来的电压与功率波动问题。文中考虑储能接入节点与容量不同对风电出力波动的平抑效果不同,以系统电压偏差、日有功网损和ESS配置容量为目标函数建立多目标储能优化配置模型。采用一种基于天牛须搜索算法的改进多目标粒子群优化(beetle antennae search-improved multi-objective particle swarm optimization,BAS-IMOPSO)算法求解该模型,利用基于信息熵的逼近理想解排序法在Pareto解集中选取最佳储能配置方案。在IEEE 33节点系统中对模型进行仿真验证,结果表明:BAS-IMOPSO算法优化下的ESS降低配电网电压偏差与有功网损的能力较多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法显著提高,有效改善了系统的电能质量,具有削峰填谷的作用,验证了BAS-IMOPSO算法的有效性。 展开更多
关键词 储能 风电出力波动 容量优化 荷电状态(SOC) LOGISTIC映射 天牛搜索-改进多目标粒子群优化(BAS-IMOPSO)算法
在线阅读 下载PDF
NMF和增强奇异值分解的自适应零水印算法 被引量:4
4
作者 肖振久 宁秋莹 +2 位作者 张晗 唐晓亮 陈虹 《计算机应用研究》 CSCD 北大核心 2020年第4期1144-1148,1153,共6页
针对奇异值分解水印算法导致虚警率高、稳健性不强的问题,提出一种基于分块非负矩阵分解(NMF)和增强奇异值分解(BN-SVD)相结合的自适应零水印算法。首先将原始灰度图像进行二级离散小波变换(DWT),对变换后的二级低频子带(LL2)进行不重... 针对奇异值分解水印算法导致虚警率高、稳健性不强的问题,提出一种基于分块非负矩阵分解(NMF)和增强奇异值分解(BN-SVD)相结合的自适应零水印算法。首先将原始灰度图像进行二级离散小波变换(DWT),对变换后的二级低频子带(LL2)进行不重叠分块,并对每一个子块进行秩为r的NMF分解;然后对NMF分解得到的特征矩阵采用增强奇异值分解,依据每一个块矩阵的最大奇异值与整体最大奇异值均值的大小关系构成特征向量;利用生成的特征向量与经过Arnold变换与混沌映射双重置乱加密水印图像作异或运算生成零水印,并利用天牛须优化算法(BAS)自适应确定增强奇异值分解中最抗攻击缩放比例的参数β。实验结果表明,在虚警问题上NC值达到0.4以下,JPEG压缩、噪声、滤波、旋转、剪切以及混合攻击下,提取水印图像与原水印图像的归一化系数NC值均可达到99%以上,该方案高效地解决了虚警问题,具有较强的稳健性,能够有效地抵抗各种攻击。 展开更多
关键词 非负矩阵分解 增强奇异值分解 ARNOLD变换 LOGISTIC映射 天牛须优化算法
在线阅读 下载PDF
基于LASS0-MBAS-ELM的海底多相流管道CO_(2)内腐蚀速率预测 被引量:3
5
作者 骆正山 李蕾 王小完 《热加工工艺》 北大核心 2023年第14期41-45,共5页
针对海底多相流管道CO_(2)内腐蚀发生频繁,检测难度大的问题,建立基于套索回归(LASSO)和多种群甲虫天牛须优化算法(MBAS)的极限学习机(ELM)预测模型,以提高预测效率及预测精度。以LASSO回归筛选腐蚀影响因素,提取关键指标,降低预测输入... 针对海底多相流管道CO_(2)内腐蚀发生频繁,检测难度大的问题,建立基于套索回归(LASSO)和多种群甲虫天牛须优化算法(MBAS)的极限学习机(ELM)预测模型,以提高预测效率及预测精度。以LASSO回归筛选腐蚀影响因素,提取关键指标,降低预测输入维度;采用MBAS对ELM的输入权值及隐层阈值进行修正,避免因随机设置造成的不稳定性。以我国海南东部某海底油气管道的50组数据为例,通过MATLAB模拟仿真,分析预测结果,并与其他两种模型对比。结果表明:温度、pH值、流体流速和CO_(2)分压是影响该类型管道腐蚀的关键因素。LASSO-MBAS-ELM模型的预测结果与实际值拟合度更高,其均方根误差、平均绝对误差及平均绝对百分误差分别为0.089%、0.079%和3.068%,均优于对比模型。所提出的方法在数据有限的情况下,仍具有良好的可靠性和稳定性,为准确掌握海底管道腐蚀状况提供了新的思路;同时为海洋油气运输系统日常运行维护提供了参考依据。 展开更多
关键词 海底多相流管道 CO_(2)内腐蚀 LASSO回归 多种群甲虫天牛须优化算法(MBAS) 极限学习机(ELM)
在线阅读 下载PDF
基于PFA-MBAS-BP神经网络模型的光伏发电短期预测 被引量:28
6
作者 左远龙 黄玉水 +2 位作者 杨晓辉 伍惠铖 刘豪 《电力系统保护与控制》 EI CSCD 北大核心 2020年第15期84-91,共8页
针对光伏发电短期预测模型的输入变量多且关系复杂、BP神经网络稳定性差且易陷入局部最优解等问题,建立了一种基于主因子分析法(PFA)和优化天牛须搜索算法(MBAS)的改进BP神经网络光伏发电短期预测模型。该模型首先对光伏历史发电数据和... 针对光伏发电短期预测模型的输入变量多且关系复杂、BP神经网络稳定性差且易陷入局部最优解等问题,建立了一种基于主因子分析法(PFA)和优化天牛须搜索算法(MBAS)的改进BP神经网络光伏发电短期预测模型。该模型首先对光伏历史发电数据和气象数据进行降维简化分析,利用主因子分析法对影响光伏发电的主要因素进行相关性分析,选取主因子作为预测模型输入量。然后利用MBAS算法的空间寻优搜索,选取BP神经网络训练的最优权值阈值。最后,利用实测历史数据对不同预测模型进行仿真对比。仿真结果表明,所建立的改进模型的预测精度可达92.5%,图像数据拟合程度高且适用多种天气类型的光伏发电预测。 展开更多
关键词 BP神经网络 主因子分析 优化天牛算法 光伏发电 短期预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部