The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and...The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290 ℃ in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li2CO3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn3O4 at 400 ℃. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn^4+ can be deoxidized to Mn^2+ by carbon and electrolyte through the simulation of blast process.展开更多
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290 ℃ in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li2CO3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn3O4 at 400 ℃. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn^4+ can be deoxidized to Mn^2+ by carbon and electrolyte through the simulation of blast process.