期刊文献+
共找到3,269篇文章
< 1 2 164 >
每页显示 20 50 100
企业科技领军人才的多重构型及成才路径:基于大语言模型(LLMs)的质性分析
1
作者 赵晨 林晨 +2 位作者 王宏飞 杜鹏 李建新 《中国软科学》 北大核心 2025年第2期130-139,共10页
基于生涯资本理论,采用大语言模型及K-prototypes聚类分析118名企业科技领军人才。析出实践开拓型、组织发展型、价值引领型、科创新锐型4类人才构型,揭示其“外部环境熏陶、内隐特质激活、外部能力涌现”的内外交错式成长逻辑,廓清各... 基于生涯资本理论,采用大语言模型及K-prototypes聚类分析118名企业科技领军人才。析出实践开拓型、组织发展型、价值引领型、科创新锐型4类人才构型,揭示其“外部环境熏陶、内隐特质激活、外部能力涌现”的内外交错式成长逻辑,廓清各构型差异及多元化发展路径,明确家国情怀的目标导向与科研品质的能力支撑是各构型成才的共性因素。 展开更多
关键词 科技领军人 人才画像 大语言模型 成长路径
在线阅读 下载PDF
基于大语言模型的CIL-LLM类别增量学习框架
2
作者 王晓宇 李欣 +1 位作者 胡勉宁 薛迪 《计算机科学与探索》 北大核心 2025年第2期374-384,共11页
在文本分类领域,为了提升类别增量学习模型的分类准确率并避免灾难性遗忘问题,提出了一种基于大语言模型(LLM)的类别增量学习框架(CIL-LLM)。CIL-LLM框架通过抽样和压缩环节选取具有代表性的样本,利用较强语言理解能力的LLM基于上下文... 在文本分类领域,为了提升类别增量学习模型的分类准确率并避免灾难性遗忘问题,提出了一种基于大语言模型(LLM)的类别增量学习框架(CIL-LLM)。CIL-LLM框架通过抽样和压缩环节选取具有代表性的样本,利用较强语言理解能力的LLM基于上下文学习提炼关键技能,以这些技能作为分类的依据,从而降低了存储成本;采用关键词匹配环节选取最优技能,以此构建提示词,引导下游弱LLM进行分类,提高了分类的准确性;根据基于知识蒸馏的技能融合环节,不仅实现了技能库的有效拓展和更新,还兼顾了新旧类别特性的学习。对比实验结果表明,在THUCNews数据集上的测试中,与现有的L-SCL方法相比,CIL-LLM框架在所有任务上的平均准确率提升了6.3个百分点,性能下降率降低了3.1个百分点。此外,在消融实验中,经由CIL-LLM框架增强的SLEICL模型相比于原有模型,所有任务的平均准确率提高了10.4个百分点,性能下降率降低了3.3个百分点。消融实验进一步验证了提出的样本压缩、关键词匹配和技能融合环节均对模型的准确率和性能下降率产生了优化效果。 展开更多
关键词 类别增量学习 大语言模型(llm) 主题分类 知识蒸馏
在线阅读 下载PDF
SWARM-LLM:基于大语言模型的无人集群任务规划系统 被引量:1
3
作者 李婷婷 王琪 +1 位作者 王嘉康 徐勇军 《计算机科学》 北大核心 2025年第1期72-79,共8页
针对无人集群系统自主智能性不足、异构无人集群协同效率低、任务分配不均衡等问题,文中面向无人集群自主规划、高效协作、智能决策的需求,首先提出了一种新的基于大语言模型的无人集群任务规划系统框架(SWARM-LLM)。该框架利用大语言... 针对无人集群系统自主智能性不足、异构无人集群协同效率低、任务分配不均衡等问题,文中面向无人集群自主规划、高效协作、智能决策的需求,首先提出了一种新的基于大语言模型的无人集群任务规划系统框架(SWARM-LLM)。该框架利用大语言模型将高层次的任务指令转化为具体的智能无人集群任务规划方案,通过任务分解、任务分配、任务执行等多个阶段来实现无人集群协同任务。进一步地,设计了一套适用于无人集群规划的提示工程方法-规划链(Planning Chain, PC),用来指导和优化上述各阶段的实施。最终,在无人集群仿真环境(AirSim)中构建了不同类别和复杂度的任务,并进行了评估实验。与其他基于优化算法和机器学习的算法相比,实验结果证明了SWARM-LLM框架的有效性,并在任务成功率上展现出了显著的优势,平均性能提升了47.8%。 展开更多
关键词 任务规划 无人集群 大语言模型 协同策略 智能决策
在线阅读 下载PDF
工匠精神与大国工匠成长路径:基于大语言模型(LLMs)的质性研究
4
作者 林晨 赵晨 徐燕 《科学管理研究》 北大核心 2025年第3期132-143,共12页
大国工匠是支撑现代化产业体系建设的重要人才力量,有必要就大国工匠的内隐特质和外显特征展开刻画,形成对其人才画像及成长路径的全面理解。基于大语言模型(LLMs)历遍大国工匠的文本资料,提炼其工作价值观体系,采用K-prototypes聚类算... 大国工匠是支撑现代化产业体系建设的重要人才力量,有必要就大国工匠的内隐特质和外显特征展开刻画,形成对其人才画像及成长路径的全面理解。基于大语言模型(LLMs)历遍大国工匠的文本资料,提炼其工作价值观体系,采用K-prototypes聚类算法析出人才画像构型;接着采用大语言模型和人工相结合的质性编码,梳理各构型大国工匠的成才路径。识别出奋进青年、巾帼栋梁、领军名匠、使命匠人、精益俊才、泰斗传人六类人才画像构型,总结出以“环境熏陶-价值涌现-能力涌现-杰出贡献”为过程的成才路径,且不同构型存在“殊途同归”的多重成长路径。结论有助于大国工匠人才的识别和培养,同时拓宽了大语言模型在社科研究中的应用。 展开更多
关键词 大国工匠 人才画像 大语言模型 文本分析
在线阅读 下载PDF
KADR-LLM:基于深度检索推理的大语言模型辅助档案开放审核方法
5
作者 曹正阳 金咏诗 +2 位作者 孙俐丽 秦洋 冯李航 《中国测试》 北大核心 2025年第7期9-18,共10页
针对传统档案开放审核模式中存在的效率低下、主观性强及语义分析能力不足等问题,该文提出一种基于KADR-LLM的智能审核框架。该框架通过融合DPR的密集检索能力与KARP的渐进式推理机制,构建“检索-推理-验证”三阶审核范式,显著提升审核... 针对传统档案开放审核模式中存在的效率低下、主观性强及语义分析能力不足等问题,该文提出一种基于KADR-LLM的智能审核框架。该框架通过融合DPR的密集检索能力与KARP的渐进式推理机制,构建“检索-推理-验证”三阶审核范式,显著提升审核的精准性与效率。创新性体现于:设计基于文档空间结构的双通道文本预处理方法,通过段落裁剪优化语义表征;融合敏感词匹配与检索增强生成技术,建立规则驱动的动态推理机制;提出关键词引导的渐进式审核策略,实现从表层特征提取到逻辑链验证的可解释决策。实验结果表明,在OParchives等数据集上,KADR-LLM在零样本与少样本条件下的审核准确率分别达79.98%与82.34%,较基线模型提升4.31%,且具备更高的语义泛化能力。 展开更多
关键词 档案开放审核 大语言模型 密集检索 推理提示
在线阅读 下载PDF
知识图谱与大语言模型协同共生模式及其教育应用综述 被引量:2
6
作者 李晓理 刘春芳 耿劭坤 《计算机工程与应用》 北大核心 2025年第15期1-13,共13页
近年,人工智能技术,特别是大语言模型、知识图谱技术的迅速发展,为教育的数字化、智能化转型提供了重要的技术条件。分别分析了大语言模型与知识图谱两技术在智能教育领域的应用优势、现状以及存在的问题。在此基础上,深入探讨了知识图... 近年,人工智能技术,特别是大语言模型、知识图谱技术的迅速发展,为教育的数字化、智能化转型提供了重要的技术条件。分别分析了大语言模型与知识图谱两技术在智能教育领域的应用优势、现状以及存在的问题。在此基础上,深入探讨了知识图谱与大语言模型的协同共生模式,包括两者相互增强的方式方法,并对协同技术研究现状进行了归纳分析,总结了近年来在教育领域的相关应用。最后,对知识图谱与大语言模型技术联合应用于教育领域的发展趋势进行了总结与展望。 展开更多
关键词 知识图谱(KG) 大语言模型(llm) 智能教育
在线阅读 下载PDF
大语言模型综述与展望 被引量:14
7
作者 秦小林 古徐 +1 位作者 李弟诚 徐海文 《计算机应用》 北大核心 2025年第3期685-696,共12页
大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参... 大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参数和数据支持,展现出更强的语言理解与生成能力,广泛应用于机器翻译、问答系统、对话生成等众多任务中并表现卓越。现有的综述大多侧重于LLM的理论架构与训练方法,对LLM的产业级应用实践及技术生态演进的系统性探讨仍显不足。因此,在介绍LLM的基础架构、训练技术及发展历程的基础上,分析当前通用的LLM关键技术和以LLM为底座的先进融合技术。通过归纳总结现有研究,进一步阐述LLM在实际应用中面临的挑战,包括数据偏差、模型幻觉和计算资源消耗等问题,并对LLM的持续发展趋势进行展望。 展开更多
关键词 大语言模型 智能体 自然语言处理 检索增强生成 模型幻觉
在线阅读 下载PDF
基于大语言模型的企业碳排放分析与知识问答系统
8
作者 韩明 曹智轩 +2 位作者 王敬涛 段丽英 王剑宏 《计算机工程与应用》 北大核心 2025年第16期370-382,共13页
随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,... 随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,开发了基于大语言模型的企业碳排放分析与知识问答系统。提出了一种多样化索引模块构建方法,构建高质量的知识与法规检索数据集。针对碳排放报告(政策)领域的知识问答任务,提出了自提示检索增强生成架构,集成意图识别、改进的结构化思维链、混合检索技术、高质量提示工程和Text2SQL系统,支持多维度分析企业可持续性报告,为企业碳排放报告(政策)提供了一种高效、精准的知识问答解决方案。通过多层分块机制、文档索引和幻觉识别功能,确保结果的准确性与可验证性,降低了LLM技术在系统中的幻觉率。通过对比实验,所提算法在各模块的协同下在检索增强生成实验中各指标表现优异,对于企业碳排放报告的关键信息抽取和报告评价,尤其是长文本处理具有明显的优势。 展开更多
关键词 大语言模型(llm) 知识问答系统 模型幻觉 信息检索 提示学习
在线阅读 下载PDF
基于大语言模型的财会知识图谱构建及应用展望 被引量:9
9
作者 陈宋生 王明 《会计之友》 北大核心 2025年第5期152-160,F0003,共10页
生成式人工智能(AIGC)的快速崛起,掀起“人工智能+”赋能各行各业的浪潮,对会计领域的研究提供了新思路。由于财会行业要求高精确性与可解释性,而大语言模型存在着模型幻觉与决策黑箱,使得大模型应用于财会领域仍存在较大阻碍,构建财会... 生成式人工智能(AIGC)的快速崛起,掀起“人工智能+”赋能各行各业的浪潮,对会计领域的研究提供了新思路。由于财会行业要求高精确性与可解释性,而大语言模型存在着模型幻觉与决策黑箱,使得大模型应用于财会领域仍存在较大阻碍,构建财会知识图谱成为弥补大语言模型不足的有力工具。基于此,文章调用GPT-4o mini API,利用提示词工程(Prompt)与智能体(Agent)思路方法进行自动化知识抽取,构建中国会计准则知识图谱,从模式层提取财会实体与实体间复杂的勾稽关系,为大模型优化微调提供数据层支持。图谱构建结果表明,GPT-4o mini能够成功从大量财务数据中提取丰富的知识五元组,并基于此构建财会知识图谱。最终,通过Neo4j技术实现知识图谱的可视化和查询功能。本研究证明大语言模型构建财会知识图谱具备可行性,能够显著提高知识图谱构建效率,为知识图谱的优化构建提供新思路,也为未来知识图谱融入大模型、优化模型性能提供基底数据支撑。 展开更多
关键词 大语言模型 知识图谱 智能化构建 财会知识
在线阅读 下载PDF
基于大型语言模型的AI招生咨询助理设计与实现 被引量:3
10
作者 阮昆 杨璟轩 +3 位作者 殷旭 储雯 罗婷婷 黄容 《实验室研究与探索》 北大核心 2025年第2期110-116,共7页
针对高考招生咨询业务繁忙,咨询覆盖范围有限、咨询效率不高等问题,基于检索增强生成、大型语言模型、提示词工程和检索增强生成转结构化查询语言等技术构建AI招生咨询助理,搜集学校招生信息网招生政策、常见问题、学院专业介绍等建立... 针对高考招生咨询业务繁忙,咨询覆盖范围有限、咨询效率不高等问题,基于检索增强生成、大型语言模型、提示词工程和检索增强生成转结构化查询语言等技术构建AI招生咨询助理,搜集学校招生信息网招生政策、常见问题、学院专业介绍等建立本地权威招生知识库,对政策咨询类问题直接在本地向量知识库检索,对数据查询类问题转化为SQL数据查询,将检索或查询结果送至大模型推理生成回复,提升提问方式的自由度以及问题回复的权威性和实时性,降低大模型幻觉,实现全天候为考生和家长提供精准化、智能化、个性化的咨询服务。在2024年高考招生咨询中,大幅度减轻学校招生咨询工作压力,有效提升招生咨询效率,促进公平获取招生信息。 展开更多
关键词 大型语言模型 检索增强生成技术 提示词工程 招生咨询
在线阅读 下载PDF
大语言模型赋能图书馆参考咨询服务:逻辑、场景与体系 被引量:20
11
作者 郭亚军 寇旭颍 +1 位作者 冯思倩 李帅 《图书馆论坛》 北大核心 2025年第1期118-127,共10页
文章分析大语言模型的生成机理及应用模式,探讨其赋能图书馆参考咨询服务的适配性。在此基础上,梳理大语言模型赋能图书馆参考咨询服务的理论逻辑,探索大语言模型赋能下图书馆参考咨询服务的应用场景,并根据咨询前期、中期、后期三个流... 文章分析大语言模型的生成机理及应用模式,探讨其赋能图书馆参考咨询服务的适配性。在此基础上,梳理大语言模型赋能图书馆参考咨询服务的理论逻辑,探索大语言模型赋能下图书馆参考咨询服务的应用场景,并根据咨询前期、中期、后期三个流程构建参考咨询服务体系。建议图书馆从加强多种技术的深层次嵌入、推行“引导+反馈”的交互服务模式、实现机器与馆员的协同合作、完善用户数据收集和分析机制等方面,推进大语言模型赋能图书馆参考咨询服务的发展。 展开更多
关键词 大语言模型 ChatGPT 智慧图书馆 参考咨询 AIGC
在线阅读 下载PDF
基于大语言模型的智能汽车仿真测试 被引量:2
12
作者 朱冰 汤瑞 +4 位作者 赵健 张培兴 李文旭 李嘉胜 徐雪峰 《汽车工程》 北大核心 2025年第4期587-597,共11页
针对现有智能汽车基于场景测试方法严重依赖人力、效率瓶颈凸显的问题,本文提出了一种基于大语言模型的智能汽车仿真测试方法。首先,设计基于大语言模型的智能汽车仿真测试架构,建立了对应的数据层和仿真层;在此基础上,构建了基于大语... 针对现有智能汽车基于场景测试方法严重依赖人力、效率瓶颈凸显的问题,本文提出了一种基于大语言模型的智能汽车仿真测试方法。首先,设计基于大语言模型的智能汽车仿真测试架构,建立了对应的数据层和仿真层;在此基础上,构建了基于大语言模型的智能汽车仿真测试流程,针对知识问答型任务设计了知识挖掘、模型微调与知识库增强检索应用流程,针对场景生成任务设计了场景类型分析、场景要素生成、场景工具链调用的应用路径,针对测试评价型任务,设计了测试场景解析、评价体系构建与仿真测试执行综合应用框架;最后,对各任务进行了测试。结果证明,本文所提出的测试方法可以有效解决不同类型的测试任务,提升测试效率。 展开更多
关键词 智能汽车 仿真测试 大语言模型 场景生成 自动测试
在线阅读 下载PDF
人工智能的语言优势和不足:基于大语言模型与真实学生语文能力的比较 被引量:3
13
作者 高承海 党宝宝 +1 位作者 王冰洁 吴胜涛 《心理学报》 北大核心 2025年第6期947-966,I0004-I0010,共27页
采用定量和定性相结合的混合研究方法,从准确性、规范性、情感性和创造性四个维度评估了人工智能的语言优势和不足。研究1发现,相对于真实学生,GPT-4现代文知识(尤其概念知识)的准确性较高,但其古代诗文和语言文字运用的准确性较低;GPT-... 采用定量和定性相结合的混合研究方法,从准确性、规范性、情感性和创造性四个维度评估了人工智能的语言优势和不足。研究1发现,相对于真实学生,GPT-4现代文知识(尤其概念知识)的准确性较高,但其古代诗文和语言文字运用的准确性较低;GPT-4规范性得分与真实学生相当,情感性和创造性超过及格水平、但低于真实学生,且前者最优个体的规范性、情感性得分与真实学生最高分持平。研究2基于文心ERNIE-4重复验证了上述结果,且ERNIE-4的规范性得分高于真实学生。研究揭示了人工智能在现代文知识、规范领域的优势和古代诗文知识的不足,以及情感性与创造性方面的潜力。这些发现有助于理解和提升人工智能的文化适应性和人性化、个性化生成能力,也对反思和培养人类的独特优势具有重要启发。 展开更多
关键词 大语言模型 语文能力 准确性 情感性 创造性
在线阅读 下载PDF
基于大语言模型技术的古籍限定域关系抽取及应用研究 被引量:3
14
作者 刘畅 张琪 +4 位作者 王东波 沈思 吴梦成 刘浏 苏雨诗 《情报学报》 北大核心 2025年第2期200-219,共20页
古籍文本中的细粒度知识单元的自动抽取和结构化能够为群体传记、历史地图等古籍数字人文研究提供数据基础。基于判别式模型的抽取方法严重受制于古汉语本身语义的复杂性和训练样本的缺失,抽取效果和领域迁移的效果受到影响,相关研究亟... 古籍文本中的细粒度知识单元的自动抽取和结构化能够为群体传记、历史地图等古籍数字人文研究提供数据基础。基于判别式模型的抽取方法严重受制于古汉语本身语义的复杂性和训练样本的缺失,抽取效果和领域迁移的效果受到影响,相关研究亟待生成式人工智能技术的赋能。本研究探索了基于大语言模型的古籍领域限定域关系抽取方法和高质量训练语料自动生成方法。通过比较不同提示模板对模型抽取性能的影响,证明了微调方法对模型性能提升具有显著价值。基于ChatGPT4的API服务,结合自指令、思维链与人类反馈合成古籍限定域关系抽取数据集,在数据增强后于两种古籍关系抽取数据集上分别取得56.07%和30.50%的F1值,迁移能力较两种使用全部数据训练的模型均取得了显著提升。本研究还探索了协同使用自指令模型和自动评价模型合成训练语料和评价信息,并基于合成数据训练模型,有效缓解了训练数据不足的问题。研究结果表明,使用大语言模型抽取关系三元组与合成训练数据,能够显著降低过往限定域关系抽取的人力成本,有助于提升古籍领域知识图谱的构建效率。 展开更多
关键词 大语言模型 古籍智能 限定域关系抽取 AI生成数据 数字人文
在线阅读 下载PDF
自然语言处理的深度学习模型综述 被引量:4
15
作者 何雪锋 周洁 +1 位作者 陈德光 廖海 《计算机应用与软件》 北大核心 2025年第2期1-19,101,共20页
模型作为自然语言处理的关键,直接关系到最终性能。该文介绍自然语言处理中涉及到的模型。按照规则与统计的方法从发布时间、特点、优缺点与适用范围等方面对传统自然语言处理模型进行介绍;重点将神经网络依据不同的技术划分为不同的类... 模型作为自然语言处理的关键,直接关系到最终性能。该文介绍自然语言处理中涉及到的模型。按照规则与统计的方法从发布时间、特点、优缺点与适用范围等方面对传统自然语言处理模型进行介绍;重点将神经网络依据不同的技术划分为不同的类型,对每种类型进行介绍并总结其相应特性;对以BERT为基础的两大类改进模型进行具体介绍并对每种模型进行归纳;分析目前自然语言处理模型面临的挑战与对应的解决办法;对未来工作进行展望。 展开更多
关键词 自然语言处理 语言模型 人工智能
在线阅读 下载PDF
大语言模型安全性:分类、评估、归因、缓解、展望 被引量:6
16
作者 黄河燕 李思霖 +7 位作者 兰天伟 邱昱力 柳泽明 姚嘉树 曾理 单赢宇 施晓明 郭宇航 《智能系统学报》 北大核心 2025年第1期2-32,共31页
大语言模型能够在多个领域及任务上给出与人类水平相当的解答,并且在未经训练的领域和任务上展现了丰富的涌现能力。然而,目前基于大语言模型的人工智能系统存在许多安全性隐患,例如大语言模型系统容易受到难以被察觉的攻击,模型生成的... 大语言模型能够在多个领域及任务上给出与人类水平相当的解答,并且在未经训练的领域和任务上展现了丰富的涌现能力。然而,目前基于大语言模型的人工智能系统存在许多安全性隐患,例如大语言模型系统容易受到难以被察觉的攻击,模型生成的内容存在违法、泄密、仇恨、偏见、错误等问题。并且在实际应用中,大语言模型可能被滥用,生成的内容可能引起国家、人群和领域等多个层面的困扰。本文旨在深入探讨大语言模型面临的安全性风险并进行分类,回顾现有的评估方法,研究安全性风险背后的因果机制,并总结现有的解决措施。具体而言,本文明确了大语言模型面临的10种安全性风险,并将其归类为模型自身安全性风险与生成内容的安全性风险两个方面,并对每种风险进行了详细的分析和讲解。此外,本文还从生命周期和危害程度两个角度对大语言模型的安全风险进行了系统化的分析,并介绍了现有的大语言模型安全风险评估方法、大语言模型安全风险的出现原因以及相应的缓解措施。大语言模型的安全风险是亟待解决的重要问题。 展开更多
关键词 大语言模型 模型自身安全性 生成内容安全性 安全性分类 安全性风险评估 安全性风险归因 安全性风险缓解措施 安全性研究展望
在线阅读 下载PDF
多模态大语言模型的安全性研究综述 被引量:3
17
作者 陈晋音 席昌坤 +2 位作者 郑海斌 高铭 张甜馨 《计算机科学》 北大核心 2025年第7期315-341,共27页
随着大型语言模型的快速发展,多模态大语言模型因其在语言、图像等多种模态上的卓越表现而备受瞩目。其不仅在日常工作中成为用户的得力助手,还逐渐渗透到自动驾驶、医学诊断等各大应用领域。与传统的大型语言模型相比,多模态大语言模... 随着大型语言模型的快速发展,多模态大语言模型因其在语言、图像等多种模态上的卓越表现而备受瞩目。其不仅在日常工作中成为用户的得力助手,还逐渐渗透到自动驾驶、医学诊断等各大应用领域。与传统的大型语言模型相比,多模态大语言模型由于更接近于多资源的现实世界应用以及多模态处理的复杂性而具有巨大的潜力和挑战。然而,多模态大语言模型的脆弱性研究相对较少,这些模型在实际应用中面临着诸多安全性挑战。为此,对多模态大语言模型尤其是大型视觉-语言模型的安全性进行了全面调查。首先,概述了多模态大语言模型的基本结构和发展历程;其次,讨论了多模态大语言模型在使用全周期的安全风险成因,分析了模型结构与安全风险之间的关联性;再次,系统总结了当前在多模态大语言模型图像和文本安全性的评估方面所做的工作,包括模型幻觉、隐私安全、偏见和鲁棒性4个方面,并将针对多模态大语言模型的攻击分为越狱攻击、对抗攻击、后门攻击和中毒攻击;然后,综合概述了一系列针对多模态大语言模型幻觉、隐私泄露和偏见等威胁的可信增强方法以及针对模型恶意攻击的防御措施;最后,讨论了多模态大语言模型安全性研究的主要机遇与挑战,为研究人员在多模态大语言模型的复杂应用和研究领域提供了指导建议。 展开更多
关键词 模态大语言模型 安全 幻觉 对抗 越狱 防御
在线阅读 下载PDF
大语言模型的“语言”跟自然语言性质迥然不同 被引量:4
18
作者 陆俭明 《语言战略研究》 北大核心 2025年第1期1-1,共1页
大语言模型的诞生“在人类历史上称得上史无前例的技术成就”(孙茂松),因为这使机器真正能跟人自由对话了。先前的自然语言处理——具体到汉语就是中文信息处理,其目的就是要让机器能理解我们人所说的话语,反过来又能生成让我们人能接... 大语言模型的诞生“在人类历史上称得上史无前例的技术成就”(孙茂松),因为这使机器真正能跟人自由对话了。先前的自然语言处理——具体到汉语就是中文信息处理,其目的就是要让机器能理解我们人所说的话语,反过来又能生成让我们人能接受的话语,以实现“人机对话”。为达到此目的,上世纪70年代解决了“字处理”问题;80年代进一步解决了“词处理”问题,包括分词和词性标注;90年代逐步解决了“句处理”问题,包括句子的句法分析和语义分析。 展开更多
关键词 中文信息处理 自然语言处理 句法分析 词性标注 语义分析 人机对话 语言模型 分词
在线阅读 下载PDF
医疗领域的大型语言模型综述 被引量:1
19
作者 肖建力 许东舟 +4 位作者 王浩 刘敏 周雷 朱林 顾松 《智能系统学报》 北大核心 2025年第3期530-547,共18页
深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言... 深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。 展开更多
关键词 人工智能 深度学习 TRANSFORMER 大型语言模型 智慧医疗 数据分析 图像处理 计算机视觉
在线阅读 下载PDF
视觉—语言—动作模型综述:从前史到前沿 被引量:2
20
作者 张慧 梁姝彤 +5 位作者 李明轩 田永林 葛经纬 于慧 李灵犀 王飞跃 《自动化学报》 北大核心 2025年第9期1922-1950,共29页
视觉-语言-动作(VLA)模型作为具身智能发展的核心方向,旨在构建统一的多模态表示与感知–决策–执行一体化架构,以突破传统模块化系统在功能割裂、语义对齐不足及泛化能力有限等方面的瓶颈.本文系统回顾前VLA时代的技术积淀,梳理模块化... 视觉-语言-动作(VLA)模型作为具身智能发展的核心方向,旨在构建统一的多模态表示与感知–决策–执行一体化架构,以突破传统模块化系统在功能割裂、语义对齐不足及泛化能力有限等方面的瓶颈.本文系统回顾前VLA时代的技术积淀,梳理模块化、端到端和混合三类主流建模范式,分析其结构特点、能力优势与面临的关键挑战.在此基础上,总结当前代表性VLA模型的体系结构、训练机制、多模态融合策略及应用成效,并对典型数据集与评测基准进行分类比较.最后,结合跨模态协同、知识注入、长时序规划与真实环境泛化等方面,展望未来VLA模型的发展趋势与研究方向. 展开更多
关键词 具身智能 视觉—语言—动作模型 多模态融合 端到端学习 任务泛化
在线阅读 下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部