生成式人工智能(AIGC)的快速崛起,掀起“人工智能+”赋能各行各业的浪潮,对会计领域的研究提供了新思路。由于财会行业要求高精确性与可解释性,而大语言模型存在着模型幻觉与决策黑箱,使得大模型应用于财会领域仍存在较大阻碍,构建财会...生成式人工智能(AIGC)的快速崛起,掀起“人工智能+”赋能各行各业的浪潮,对会计领域的研究提供了新思路。由于财会行业要求高精确性与可解释性,而大语言模型存在着模型幻觉与决策黑箱,使得大模型应用于财会领域仍存在较大阻碍,构建财会知识图谱成为弥补大语言模型不足的有力工具。基于此,文章调用GPT-4o mini API,利用提示词工程(Prompt)与智能体(Agent)思路方法进行自动化知识抽取,构建中国会计准则知识图谱,从模式层提取财会实体与实体间复杂的勾稽关系,为大模型优化微调提供数据层支持。图谱构建结果表明,GPT-4o mini能够成功从大量财务数据中提取丰富的知识五元组,并基于此构建财会知识图谱。最终,通过Neo4j技术实现知识图谱的可视化和查询功能。本研究证明大语言模型构建财会知识图谱具备可行性,能够显著提高知识图谱构建效率,为知识图谱的优化构建提供新思路,也为未来知识图谱融入大模型、优化模型性能提供基底数据支撑。展开更多
大语言模型(large language model,LLM)在一般性教学辅助、文科课程和计算机课程中得到成功应用,但应用于电力电子实验教学时存在电路拓扑图识别不准、关键信息缺失等问题。为此,该文提出基于智能插件和LLM的教学辅助设计方法:首先通过...大语言模型(large language model,LLM)在一般性教学辅助、文科课程和计算机课程中得到成功应用,但应用于电力电子实验教学时存在电路拓扑图识别不准、关键信息缺失等问题。为此,该文提出基于智能插件和LLM的教学辅助设计方法:首先通过深度学习模型实现电路拓扑图识别,并将其转换为电路网表文本;然后向LLM提供网表文本及不同提示词,引导LLM实现网表检查、电路分析、文档生成、知识问答等教学功能,为教师提供高质量的教学设计起点。该方法有望减轻教师负担,提高实验教学的时效性和教学质量,为电力电子实验教学设计提供一种有用工具。展开更多
软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件...软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.展开更多
文摘生成式人工智能(AIGC)的快速崛起,掀起“人工智能+”赋能各行各业的浪潮,对会计领域的研究提供了新思路。由于财会行业要求高精确性与可解释性,而大语言模型存在着模型幻觉与决策黑箱,使得大模型应用于财会领域仍存在较大阻碍,构建财会知识图谱成为弥补大语言模型不足的有力工具。基于此,文章调用GPT-4o mini API,利用提示词工程(Prompt)与智能体(Agent)思路方法进行自动化知识抽取,构建中国会计准则知识图谱,从模式层提取财会实体与实体间复杂的勾稽关系,为大模型优化微调提供数据层支持。图谱构建结果表明,GPT-4o mini能够成功从大量财务数据中提取丰富的知识五元组,并基于此构建财会知识图谱。最终,通过Neo4j技术实现知识图谱的可视化和查询功能。本研究证明大语言模型构建财会知识图谱具备可行性,能够显著提高知识图谱构建效率,为知识图谱的优化构建提供新思路,也为未来知识图谱融入大模型、优化模型性能提供基底数据支撑。
文摘大语言模型(large language model,LLM)在一般性教学辅助、文科课程和计算机课程中得到成功应用,但应用于电力电子实验教学时存在电路拓扑图识别不准、关键信息缺失等问题。为此,该文提出基于智能插件和LLM的教学辅助设计方法:首先通过深度学习模型实现电路拓扑图识别,并将其转换为电路网表文本;然后向LLM提供网表文本及不同提示词,引导LLM实现网表检查、电路分析、文档生成、知识问答等教学功能,为教师提供高质量的教学设计起点。该方法有望减轻教师负担,提高实验教学的时效性和教学质量,为电力电子实验教学设计提供一种有用工具。
文摘软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.