期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
面向大规模目标跟踪的相控阵雷达资源分配方法 被引量:1
1
作者 卓娅玲 李响 +2 位作者 左磊 胡娟 唐波 《信号处理》 CSCD 北大核心 2024年第9期1608-1620,共13页
相比于传统雷达,相控阵雷达能够同时生成多个波束并灵活改变波束指向,被广泛应用于多目标跟踪领域。在大规模集群目标协同探测场景中,为支持后续节点对敌方目标进行火力拦截与打击的任务需求,相控阵雷达需要在规定时间内将空域内优先级... 相比于传统雷达,相控阵雷达能够同时生成多个波束并灵活改变波束指向,被广泛应用于多目标跟踪领域。在大规模集群目标协同探测场景中,为支持后续节点对敌方目标进行火力拦截与打击的任务需求,相控阵雷达需要在规定时间内将空域内优先级更高的目标更快地跟踪至火控精度,然而若空域内目标数量过多,雷达探测资源有限,难以完成指定跟踪任务。为了解决这一问题,本文提出了一种面向大规模目标跟踪的相控阵雷达目标分配与功率联合优化算法。首先,推导出包含目标分配和功率优化的预测条件克拉美罗下界,并将其作为目标跟踪性能的衡量指标;随后,本文同时考虑跟踪容量和跟踪精度,以最大化满足跟踪精度的目标数量和最小化多目标优先级加权平均跟踪误差为优化目标,结合相控阵雷达系统资源,建立了大规模目标跟踪下的目标分配和功率联合优化模型,对目标分配变量和发射功率变量进行自适应联合优化配置。针对上述优化问题,本文采用两步分解法,将其分解为目标分配子问题和功率优化子问题,并结合激活函数对非平滑非凸的目标函数进行平滑近似。然后,利用谱投影梯度法进行求解。仿真实验验证了所提算法相较于传统算法在多个场景下均能在指定时间内更快速地将更多目标跟踪至指定精度。 展开更多
关键词 相控阵雷达 大规模目标跟踪 目标分配 功率优化
在线阅读 下载PDF
大视场大规模目标精确检测算法应用研究 被引量:5
2
作者 张堃 姜朋朋 +2 位作者 华亮 费敏锐 周挥宇 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期191-199,共9页
提出了一种基于深度学习的大视场大规模目标精确检测算法。以香烟滤棒为检测对象,研究具有强粘连、强阴影遮挡、强畸变、低对比度的大规模目标精确识别问题。提出一种SAAU-net模型,在U型网络基础上引入具有空间感知的自注意力增强模块... 提出了一种基于深度学习的大视场大规模目标精确检测算法。以香烟滤棒为检测对象,研究具有强粘连、强阴影遮挡、强畸变、低对比度的大规模目标精确识别问题。提出一种SAAU-net模型,在U型网络基础上引入具有空间感知的自注意力增强模块和焦点损失函数有效地解决了精确语义分割问题。在精确识别环节中,根据圆相切几何规律设计了结构元匹配算法定位圆心并利用隐马尔可夫链优化搜索方向最终实现目标精确快速识别。在实验部分,分别对比了语义分割和目标识别环节中几种主流的算法。并在工业现场进行了50 000盒滤棒应用测试。试验结果表明,所提方法在语义分割、目标识别以及工业应用测试中都展现出强大竞争力,目标识别精度达到99.95%。 展开更多
关键词 大视场 大规模目标 自注意力增强 U型网络 焦点损失函数 隐马尔科夫模型
在线阅读 下载PDF
基于进化多任务的稀疏大规模多目标优化 被引量:1
3
作者 梁正平 王侃 +2 位作者 周倩 王继刚 朱泽轩 《计算机学报》 北大核心 2025年第2期358-380,共23页
稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文... 稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文从辅助任务构建与优化、辅助任务重新初始化、知识迁移等三个方面,提出了基于进化多任务优化的稀疏大规模多目标优化算法(Evolutionary Multi-Task for Sparse Large-scale Multi-objective Op⁃timization,SLMO-EMT).其中,辅助任务构建与优化方面,基于主任务精英解的稀疏分布,采用两种不同的方式对决策变量的搜索空间进行限定,构建分别用于对稀疏位置和非零决策变量进行降维优化的两个辅助任务.辅助任务重新初始化方面,根据辅助任务在历史迭代中的知识迁移效果,对其搜索空间和当前种群进行更新,以使辅助任务可持续促进主任务的进化.知识迁移方面,首先基于轮询方式和各辅助任务的知识迁移概率,挑选用于知识迁移的辅助任务,再基于相似度挑选适合的知识受体,最后在子代生成过程中采用迁移知识引导的局部交叉,借助辅助任务的知识促进主任务的进化.为验证SLMO-EMT的性能,将其与8个先进的稀疏大规模多目标优化算法在1000-10000维的32个基准测试实例,以及8个应用测试实例上进行对比,实验结果表明SLMO-EMT对于稀疏大规模多目标优化问题的求解具有明显的竞争优势.SLMO-EMT的源代码已在Github上公开:https://github.com/CIA-SZU/WK. 展开更多
关键词 稀疏大规模目标优化 进化多任务 辅助任务 知识迁移
在线阅读 下载PDF
一种采用混合策略的大规模多目标进化算法 被引量:7
4
作者 谢承旺 潘嘉敏 +2 位作者 郭华 王冬梅 付世炜 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期69-89,共21页
现实中存在大量的大规模多目标优化问题,这些问题所固有的目标函数间冲突性、巨大的搜索空间以及决策变量可能存在的交互等特征对传统的多目标进化算法构成了巨大的挑战.研究者根据此类问题的特点基于不同的视角提出了多种大规模多目标... 现实中存在大量的大规模多目标优化问题,这些问题所固有的目标函数间冲突性、巨大的搜索空间以及决策变量可能存在的交互等特征对传统的多目标进化算法构成了巨大的挑战.研究者根据此类问题的特点基于不同的视角提出了多种大规模多目标进化算法,但它们在解题的质量和效率方面尚存较大的提升空间.基于此,提出一种采用混合策略的大规模多目标进化算法LSMOEA/HS.该算法提出的一种黄金分层分组方法将大规模决策变量分成收敛性组和多样性组,然后对收敛性变量组执行基于变量组的相关性检测操作,将收敛性变量组划分成若干更小规模的子组,最后算法采用不同的优化策略分别优化收敛性变量组和多样性变量组以获得最终的解题结果.为验证LSMOEA/HS的有效性,将其与五种新近提出的高效的大规模多目标进化算法一同在决策变量维度为200、500、1000、2000和5000的2-目标和3-目标的LSMOP系列测试实例上进行IGD和HV性能测试,实验结果表明LSMOEA/HS具有显著较优的收敛性和多样性.由此表明,LSMOEA/HS是一种颇具前景的大规模多目标进化算法. 展开更多
关键词 大规模目标优化问题 变量分组 进化算法 收敛性 多样性 大规模目标进化算法
在线阅读 下载PDF
基于在线学习稀疏特征的大规模多目标进化算法 被引量:2
5
作者 高梦琦 冯翔 +1 位作者 虞慧群 王梦灵 《计算机科学》 CSCD 北大核心 2024年第3期56-62,共7页
大规模稀疏多目标优化问题(Sparse Multiobjective Optimization Problems,SMOPs)广泛存在于现实世界。为大规模SMOPs提出通用的解决方法,对于进化计算、控制论和机器学习等领域中的问题解决都具有推动作用。由于SMOPs具有高维决策空间... 大规模稀疏多目标优化问题(Sparse Multiobjective Optimization Problems,SMOPs)广泛存在于现实世界。为大规模SMOPs提出通用的解决方法,对于进化计算、控制论和机器学习等领域中的问题解决都具有推动作用。由于SMOPs具有高维决策空间和Pareto最优解稀疏的特性,现有的进化算法在解决SMOPs时,很容易陷入维数灾难的困境。针对这个问题,以稀疏分布的学习为切入点,提出了一种基于在线学习稀疏特征的大规模多目标进化算法(Large-scale Multiobjective Evolutio-nary Algorithm Based on Online Learning of Sparse Features,MOEA/OLSF)。具体地,首先设计了一种在线学习稀疏特征的方法来挖掘非零变量;然后提出了一种稀疏遗传算子,用于非零变量的进一步搜索和子代解的生成,在非零变量搜索过程中,其二进制交叉和变异算子也用于控制解的稀疏性和多样性。与最新的优秀算法在不同规模的测试问题上的对比结果表明,所提算法在收敛速度和性能方面均更优。 展开更多
关键词 进化算法 大规模目标优化 稀疏Pareto最优解 在线学习
在线阅读 下载PDF
基于自变量简约的大规模稀疏多目标优化 被引量:1
6
作者 丘雪瑶 辜方清 《计算机应用研究》 CSCD 北大核心 2024年第6期1663-1668,共6页
现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法... 现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法求解大规模稀疏多目标优化问题。该算法通过引入局部保持投影降维,保留原始自变量空间中的局部近邻关系,并设计一个归档集,将寻找到的非劣解存入其中进行训练,以提高投影的准确性。将该算法与四种流行的多目标进化算法在一系列测试问题和实际应用问题上进行了比较。实验结果表明,所提算法在解决稀疏多目标问题上具有较好的效果。因此,通过自变量简约能降低问题的求解难度,提高算法的搜索效率,在解决大规模稀疏多目标问题方面具有显著的优势。 展开更多
关键词 局部保持投影 进化算法 大规模稀疏多目标优化问题
在线阅读 下载PDF
基于双重方向向量的大规模多目标进化算法 被引量:1
7
作者 韩立君 王鹏 +1 位作者 李瑞旭 刘仲尧 《计算机科学》 CSCD 北大核心 2024年第S01期237-247,共11页
大规模多目标优化问题的决策空间维度高达数百维,在巨大的搜索空间中实现快速收敛同时高效保持种群多样性极具挑战。针对上述问题,文中提出了一种基于双重方向向量的大规模多目标进化算法(DDLE),该算法的主要思想是利用两类不同的方向... 大规模多目标优化问题的决策空间维度高达数百维,在巨大的搜索空间中实现快速收敛同时高效保持种群多样性极具挑战。针对上述问题,文中提出了一种基于双重方向向量的大规模多目标进化算法(DDLE),该算法的主要思想是利用两类不同的方向向量引导种群进化,提高算法的搜索效率。首先,设计了一种收敛性方向向量生成策略提升算法的收敛速度;其次,推出了一种多样性方向向量生成策略增强种群的多样性;最后,提出了一种基于自适应的环境选择算子动态平衡种群进化过程中的收敛性与多样性。为验证DDLE的性能,将其与5种先进的算法在72个大规模基准测试问题上进行了对比实验。实验结果表明,DDLE在求解大规模多目标优化问题上相较于其它对比算法具有显著优势。 展开更多
关键词 进化算法 大规模目标优化 双重方向向量 收敛性方向向量 多样性方向向量
在线阅读 下载PDF
基于大规模多目标优化的跳频序列设计方法
8
作者 张毅恒 刘以安 宋海凌 《计算机应用研究》 CSCD 北大核心 2024年第3期887-893,共7页
针对跳频序列设计中存在的规模小和难以兼顾多指标的问题,提出一种基于大规模多目标优化的跳频序列设计方法。首先,综合考虑跳频序列的多项性能指标,建立跳频序列多目标优化模型;然后,引入大规模多目标优化方法,并提出决策变量洗牌策略... 针对跳频序列设计中存在的规模小和难以兼顾多指标的问题,提出一种基于大规模多目标优化的跳频序列设计方法。首先,综合考虑跳频序列的多项性能指标,建立跳频序列多目标优化模型;然后,引入大规模多目标优化方法,并提出决策变量洗牌策略和反向差分进化,通过重新分配决策变量位置以形成具有多样性的非支配集,并通过使反向个体参与差分进化来为后续进化持续提供有效的方向;最后,通过提出算法对模型进行优化得到跳频序列集。实验结果表明,所提方法相较于其他多目标优化方法具有更强的寻优能力,得到跳频序列集的性能指标具有明显优势;所提方法在不同干扰环境中相较于其他方法具有更低的误码率,验证了提出方法的有效性和优越性。 展开更多
关键词 抗干扰 跳频序列 大规模目标优化 洗牌策略 反向学习
在线阅读 下载PDF
基于存档和权值扩展的大规模多目标优化算法 被引量:9
9
作者 梁正平 刘程 +2 位作者 王志强 明仲 朱泽轩 《计算机学报》 EI CAS CSCD 北大核心 2022年第5期951-972,共22页
由于不同目标之间相互冲突且搜索空间巨大,现有大规模多目标优化算法的综合性能尚存在较大改进空间.为合理均衡算法的搜索效率与搜索质量,提升算法的综合性能,本文提出一种基于存档和权值扩展的大规模多目标优化算法(LSMOEA-AWE).该算... 由于不同目标之间相互冲突且搜索空间巨大,现有大规模多目标优化算法的综合性能尚存在较大改进空间.为合理均衡算法的搜索效率与搜索质量,提升算法的综合性能,本文提出一种基于存档和权值扩展的大规模多目标优化算法(LSMOEA-AWE).该算法总体采用进化计算框架,基于大规模决策变量与小规模权值变量之间的问题转换进行求解.其核心是在进化过程中选取高质量代表性解及其对立点构建存档高效引导种群的进化方向,并引入权值扩展策略逐步扩大算法的搜索空间,在确保算法搜索效率的同时,提升搜索质量.为验证LSMOEA-AWE的有效性,将其与6个先进的大规模多目标优化算法在最新的大规模多目标基准测试问题集LSMOP上进行对比,实验结果表明LSMOEA-AWE对于大规模多目标优化问题的求解具有明显的竞争优势. 展开更多
关键词 大规模目标优化 进化计算 问题转换 存档 权值扩展
在线阅读 下载PDF
基于解空间降维的大规模约束多目标进化算法 被引量:3
10
作者 王朝 黄慧涛 +1 位作者 张晶 邱剑锋 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3120-3127,共8页
针对大规模约束多目标优化问题呈现的高维度和约束限制的解空间,提出一种基于自编码器的解空间降维方法,用以提升进化算法搜索效率.首先,设计一种可行性标签配对策略训练自编码器,通过同时利用解的可行与不可行两类标签信息,构建包含可... 针对大规模约束多目标优化问题呈现的高维度和约束限制的解空间,提出一种基于自编码器的解空间降维方法,用以提升进化算法搜索效率.首先,设计一种可行性标签配对策略训练自编码器,通过同时利用解的可行与不可行两类标签信息,构建包含可行域拓扑信息的降维子空间;其次,在降维后的子空间中进行遗传操作,通过解码器得到重构输出返回原始空间,快速定位潜在的可行区域;最后,设计一种子代自适应生成策略,通过结合在降维空间和原始空间生成的子代优势,防止模型坍塌同时提高搜索效率.在基准测试问题集上与五种先进算法进行对比,实验结果表明所提方法能获得更快的收敛速度和更好的解集质量. 展开更多
关键词 大规模约束多目标优化 进化算法 自编码器 空间降维 子代生成 可行性
在线阅读 下载PDF
自适应两阶段大规模约束多目标进化算法 被引量:3
11
作者 于坤杰 杨振宇 +2 位作者 乔康加 梁静 岳彩通 《郑州大学学报(工学版)》 CAS 北大核心 2023年第5期1-9,共9页
针对求解大规模约束多目标优化问题时遇到的收敛速度慢和可行解难以找到的困难,提出了一种自适应两阶段大规模约束多目标进化算法。首先,算法在第一阶段根据决策变量的性质,自适应地选择部分变量进行优化,且不考虑任何约束使种群快速跨... 针对求解大规模约束多目标优化问题时遇到的收敛速度慢和可行解难以找到的困难,提出了一种自适应两阶段大规模约束多目标进化算法。首先,算法在第一阶段根据决策变量的性质,自适应地选择部分变量进行优化,且不考虑任何约束使种群快速跨过不可行区域,逼近无约束帕累托前沿。其次,算法在第二阶段考虑全部的约束,利用ε约束处理技术对变量进行整体优化;同时,利用存档将进化过程中获得的可行且非支配的解保存并更新,以不断地提高种群的收敛性与多样性。最后,将所提算法与其他6种算法在37个测试函数上进行实验对比,结果表明:所提算法在25个函数上取得了最佳结果,且分别至少在31个函数上优于对比算法;所提算法在90%以上函数中的可行率都能达到100%,可以有效地解决大规模约束多目标优化问题。 展开更多
关键词 大规模约束多目标优化 算法 自适应 存档集 帕累托前沿 收敛速度 测试函数
在线阅读 下载PDF
基于大规模多目标优化的高光谱稀疏解混算法 被引量:1
12
作者 毕晓君 周泽宇 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1354-1360,共7页
针对现有多目标稀疏解混算法中存在因随机分组策略的不足和拐点选择具有单一性,进而导致高光谱数据解混精度不高的问题,本文提出一种基于大规模多目标优化的高光谱稀疏解混算法。引入大规模多目标优化算法的决策变量分组策略,并提出有... 针对现有多目标稀疏解混算法中存在因随机分组策略的不足和拐点选择具有单一性,进而导致高光谱数据解混精度不高的问题,本文提出一种基于大规模多目标优化的高光谱稀疏解混算法。引入大规模多目标优化算法的决策变量分组策略,并提出有约束拐点区域选择策略求取丰度最优解,进而提高解混精度。对模拟和真实的高光谱数据进行实验,结果表明:本文算法在解混精度上有大幅度提升,与其他算法比较,可以看出本文算法得到的丰度图边缘细节处理得更好,抗噪性能更强,验证了本文提出算法的有效性和先进性。 展开更多
关键词 高光谱图像 线性光谱解混模型 稀疏解混 目标优化 大规模目标优化算法 拐点区域
在线阅读 下载PDF
基于差分进化邻域自适应的大规模多目标算法 被引量:6
13
作者 闫世瑛 颜克斐 +1 位作者 方伟 陆恒杨 《系统工程与电子技术》 EI CSCD 北大核心 2022年第7期2112-2124,共13页
对于大规模决策变量给求解大规模多目标优化问题带来的难以收敛及解集分布不均匀问题,通过分析变量特征将其分类再分别优化是当前较为有效的求解方法,但存在变量分类不够准确、变量处理不够有针对性等不足。对此,提出一种基于差分进化... 对于大规模决策变量给求解大规模多目标优化问题带来的难以收敛及解集分布不均匀问题,通过分析变量特征将其分类再分别优化是当前较为有效的求解方法,但存在变量分类不够准确、变量处理不够有针对性等不足。对此,提出一种基于差分进化邻域自适应策略的大规模多目标优化算法。首先,通过分析扰动解的支配关系将混合变量分为多样性变量和收敛性变量,使变量分类更为准确。其次,通过对收敛性变量主成分分析降噪,降低计算成本,并设计种群的交替进化策略及差分进化的邻域自适应更新操作以提升种群进化过程中的收敛性。实验结果表明,所提算法在收敛速度和解集的分布均匀性上表现出良好的性能。 展开更多
关键词 大规模目标优化 协同进化 决策变量分析 主成分分析 邻域自适应更新
在线阅读 下载PDF
大规模多目标进化优化算法研究进展 被引量:2
14
作者 谢承旺 龙广林 +1 位作者 程文旗 郭华 《广西科学》 CAS 2020年第6期600-608,共9页
现实中存在许多大规模多目标优化问题(Large-scale Multi-objective Optimization Problem,LSMOP),它们对传统的多目标进化算法(Multi-objective Evolutionary Algorithm,MOEA)提出了挑战,有关LSMOP的研究已成为多目标优化领域的研究热... 现实中存在许多大规模多目标优化问题(Large-scale Multi-objective Optimization Problem,LSMOP),它们对传统的多目标进化算法(Multi-objective Evolutionary Algorithm,MOEA)提出了挑战,有关LSMOP的研究已成为多目标优化领域的研究热点之一。本文系统分析了近年来提出的各种大规模多目标进化优化算法(Large-scale Multi-objective Optimization Evolutionary Algorithm,LSMOEA),根据这些算法的主要思想和技术特点将它们粗略地分成4种类型,即基于协同进化(Cooperative Coevolution,CC)、基于决策变量分析、基于问题重构以及其他方法,并对今后LSMOP的研究方向提出建议,以期将LSMOP的研究引向深入。 展开更多
关键词 大规模目标优化 进化算法 协同进化 决策变量分析 变量分组
在线阅读 下载PDF
LSMOEA/2s:一种基于变量两阶段分组的多目标进化算法 被引量:2
15
作者 谢承旺 潘嘉敏 +1 位作者 付世炜 廖剑平 《广西科学》 CAS 北大核心 2023年第2期413-420,共8页
大规模多目标优化问题(Large-Scale Multi-objective Optimization Problem,LSMOP)固有的性质给多目标进化算法(Multi-Objective Evolutionary Algorithm,MOEA)带来挑战。目前大多数大规模多目标进化算法(Large-Scale Multi-Objective E... 大规模多目标优化问题(Large-Scale Multi-objective Optimization Problem,LSMOP)固有的性质给多目标进化算法(Multi-Objective Evolutionary Algorithm,MOEA)带来挑战。目前大多数大规模多目标进化算法(Large-Scale Multi-Objective Evolutionary Algorithm,LSMOEA)需要耗费较多的计算资源对大规模决策变量进行分组,使得用于优化问题解的计算资源相对不足,影响了算法效率和解题性能。基于此,本研究提出一种基于变量两阶段分组的多目标进化算法(Large-Scale Multi-Objective Evolutionary Algorithm adopting two-stage variable grouping,LSMOEA/2s)。新算法首先利用基于变量组的相关性检测方法快速识别独立变量,然后利用高频次随机分组方法将非独立变量划分成若干子组,最后利用MOEA/D算法优化所有的独立变量和非独立变量子组。将所提算法与当前4种代表性算法(MOEA/D、CCGDE3、RVEA、S3-CMA-ES)一同在LSMOP系列测试问题上进行反转世代距离(Inverted Generational Distance,IGD)性能测试,结果表明,LSMOEA/2s较其他算法具有显著的性能优势。 展开更多
关键词 大规模决策变量 目标优化问题 大规模目标进化算法 两阶段分组 收敛性 多样性
在线阅读 下载PDF
采用混合遗传算法的敏捷卫星自主观测任务规划 被引量:18
16
作者 高新洲 郭延宁 +2 位作者 马广富 张海博 李文博 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第12期1-9,共9页
为改进敏捷卫星观测大规模地面目标点时传统的遗传算法求解效率低下的问题,提高智能优化算法的求解效率,改进了传统的遗传算法,提出了禁忌退火遗传混合算法。首先,考虑到航天器在观测地面目标点的过程中所面临的时间约束、姿态轨道动力... 为改进敏捷卫星观测大规模地面目标点时传统的遗传算法求解效率低下的问题,提高智能优化算法的求解效率,改进了传统的遗传算法,提出了禁忌退火遗传混合算法。首先,考虑到航天器在观测地面目标点的过程中所面临的时间约束、姿态轨道动力学约束等多种约束条件,建立了相应的适应度函数。所提出的适应度函数能够兼顾高观测收益与低观测能耗,反应了实际工程问题的观测需求。随后,为改进传统遗传算法的变异过程,提出了禁忌退火变异方法。这一变异方法在个体变异寻优的过程中,引入了禁忌搜索方法与Metropolis法则,提高了算法搜寻到全局最优解的概率,加快了算法的收敛速度。研究结果表明,与传统的遗传算法相比,禁忌退火遗传混合算法节省了约40%的算法运行时间,该算法的运行效率也高于退火遗传算法、禁忌遗传算法等其他种类改进的遗传算法,从而验证了禁忌退火遗传混合算法求解敏捷观测卫星任务规划问题的高效性。 展开更多
关键词 禁忌退火遗传混合算法 智能优化算法 敏捷观测卫星 大规模目标点观测问题 自主任务规划
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部