期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
大规模复杂网络下重叠社区的识别 被引量:3
1
作者 王诗懿 董一鸿 +2 位作者 李志超 陈华辉 钱江波 《电子学报》 EI CAS CSCD 北大核心 2015年第8期1575-1582,共8页
随着网络规模的不断扩大,经典的复杂网络重叠社识别算法已不能高效处理现有的大规模网络图数据.本文在GraphLab并行计算模型上提出了基于重要节点扩展的重叠社区识别算法DOCVN(Detecting the Overlapping Community algorithm based on ... 随着网络规模的不断扩大,经典的复杂网络重叠社识别算法已不能高效处理现有的大规模网络图数据.本文在GraphLab并行计算模型上提出了基于重要节点扩展的重叠社区识别算法DOCVN(Detecting the Overlapping Community algorithm based on Vital Node Expanding in GraphLab).算法选取网络中PageRank值大的节点作为重要节点,计算其他节点归属于重要节点的节点归属度,并以重要节点为中心形成核心社区及扩展社区,最后根据重要节点间的连接紧密度合并核心社区及扩展社区,并计算出每个节点在所属社区里的节点重要度,实现了大规模网络的重叠社区识别.实验表明该算法与PD(Propinquity Dynamics)等现有并行算法相比更能有效地识别大规模网络的重叠社区结构. 展开更多
关键词 大规模复杂网络 GraphLab 重叠社区识别 社会网络 核心社区
在线阅读 下载PDF
大规模复杂信息网络表示学习:概念、方法与挑战 被引量:46
2
作者 齐金山 梁循 +2 位作者 李志宇 陈燕方 许媛 《计算机学报》 EI CSCD 北大核心 2018年第10期2394-2420,共27页
大数据时代的到来,使得当前的复杂信息网络研究领域面临着三个基础性问题,即网络的动态性、大规模性以及网络空间的高维性.传统复杂信息网络特征的表示通常以邻接矩阵、出入度、中心性等离散型方式表达,这种表达方式在现有的大规模动态... 大数据时代的到来,使得当前的复杂信息网络研究领域面临着三个基础性问题,即网络的动态性、大规模性以及网络空间的高维性.传统复杂信息网络特征的表示通常以邻接矩阵、出入度、中心性等离散型方式表达,这种表达方式在现有的大规模动态信息网络的新环境下,其计算效率及准确率都受到了很大的挑战.随着机器学习算法的不断发展,复杂信息网络的特征表示学习同样也引起了越来越多的关注.与自然语言中的词向量学习的目标类似,目前较为前沿的大规模复杂网络特征表示学习方法的目标是将网络中任意顶点的结构特征映射到一个低维度的、连续的实值向量,在进行这种映射的过程中,尽量保留顶点之间的结构特征关系,使大规模网络特征学习能够有效地应用于各类网络应用中,如网络中的链接预测、顶点分类、个性化推荐、大规模社区发现等.通过对复杂信息网络特征的学习,不仅能够有效缓解网络数据稀疏性问题,而且把网络中不同类型的异质信息融合为整体,可以更好地解决某些特定问题.同时,还能够高效地实现语义相关性操作,从而显著提升在大规模,特别是超大规模的网络中进行相似性顶点匹配的计算效率等.该文主要对近些年来关于复杂信息网络表示学习的方法和研究现状进行了总结,并提出自己的想法和意见.首先概述了表示学习的发展历史,然后分别阐述了有关大规模复杂信息网络、网络表示学习等基本概念与理论基础;接着,根据学习模型的不同,对经典的、大规模的、基于内容的、基于融合的以及异构的网络表示学习模型进行了全面的分析与比较.另外,对当前的网络表示学习方法所采用的实验数据集、评测指标以及应用场景等也进行了总结概括.最后给出了大规模复杂信息网络表示学习的研究难题以及未来的研究方向.大规模复杂网络表示学习是一个复杂的问题.当前研究中,大多数学习模型是根据复杂网络的结构或者内容来进行顶点的特征表示学习.只有融合复杂网络结构特征和内容特征的表示学习才能够更好地反映出一个网络特征的真实情况,使得学习得到的网络特征表示更具有意义与价值. 展开更多
关键词 大规模复杂信息网络 网络特征 顶点嵌入 网络表示学习 深度学习 特征学习
在线阅读 下载PDF
基于社区优化的深度网络嵌入方法 被引量:5
3
作者 李亚芳 梁烨 +2 位作者 冯韦玮 祖宝开 康玉健 《计算机应用》 CSCD 北大核心 2021年第7期1956-1963,共8页
随着现代网络通信和社会媒体等技术的飞速发展,网络化的大数据由于缺少高效可用的节点表示而难以应用。将高维稀疏难于应用的网络数据转化为低维、紧凑、易于应用的节点表示的网络嵌入方法受到广泛关注。然而已有网络嵌入方法得到节点... 随着现代网络通信和社会媒体等技术的飞速发展,网络化的大数据由于缺少高效可用的节点表示而难以应用。将高维稀疏难于应用的网络数据转化为低维、紧凑、易于应用的节点表示的网络嵌入方法受到广泛关注。然而已有网络嵌入方法得到节点低维特征向量后,再将其作为其他应用(节点分类、社区发现、链接预测、可视化等)的输入来作进一步分析,没有针对具体应用构建模型,难以取得满意的结果。针对网络社区发现这一具体应用,提出结合社区结构优化进行节点低维特征表示的深度自编码聚类模型CADNE。首先基于深度自编码模型,通过保持网络局部及全局链接的拓扑特性来学习节点的低维表示,然后利用网络聚类结构对节点低维表示进一步优化。该方法同时学习节点的低维表示和节点所属社区的指示向量,使节点的低维表示不仅能保持原始网络结构中的拓扑结构特性,而且能保持节点的聚类特性。与已有的经典网络嵌入方法进行对比,结果显示CADNE模型在Citeseer和Cora上取得最优聚类结果,在20NewsGroup上准确率提升最高达0.525;分类性能在Blogcatalog、Citeseer数据集上取得最好结果,在Blogcatalog上训练比例20%时比基线方法提升最高达0.512;并且CADNE模型在可视化对比中能够得到类边界更加清晰的节点低维表示,验证了所提方法具有较好的节点低维表示能力。 展开更多
关键词 大规模复杂网络 社区结构 深度学习 节点低维表示 网络嵌入
在线阅读 下载PDF
面向5G的分布式并行无线通信仿真平台设计 被引量:3
4
作者 周华 刘壮 +1 位作者 韩玮 黄伟芳 《计算机工程与应用》 CSCD 北大核心 2016年第22期15-21,85,共8页
为了满足社会对无线通信不断增长的需求,METIS组织提出了5G通信的目标、场景和可能的技术方案,面临的需求越来越苛刻,通信技术越来越复杂,对各种无线通信技术的分析和评估需要处理更多数据和进行更复杂的运算,单核仿真平台不论是内存还... 为了满足社会对无线通信不断增长的需求,METIS组织提出了5G通信的目标、场景和可能的技术方案,面临的需求越来越苛刻,通信技术越来越复杂,对各种无线通信技术的分析和评估需要处理更多数据和进行更复杂的运算,单核仿真平台不论是内存还是运算速度都无法满足5G无线通信技术的仿真需求,基于Matlab提供的分布式并行计算服务器设计一种用于评估未来5G无线通信技术和性能的仿真平台。 展开更多
关键词 分布式并行 无线通信仿真 大规模复杂网络 灵活组网 多制式共存
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部