针对遮挡场景下车辆跟踪精度下降的问题,提出了一种基于卷积核优选的遮挡车辆跟踪(Convolutional Kernel Optimization for Occluded Vehicle Tracking,CKO-OVT)算法。CKO-OVT算法通过卷积核优选策略自适应挑选出对车辆目标更为敏感的...针对遮挡场景下车辆跟踪精度下降的问题,提出了一种基于卷积核优选的遮挡车辆跟踪(Convolutional Kernel Optimization for Occluded Vehicle Tracking,CKO-OVT)算法。CKO-OVT算法通过卷积核优选策略自适应挑选出对车辆目标更为敏感的卷积算子进行特征提取,通过判别式孪生网络对跟踪结果进行评估并在跟踪失效的情况下重定位目标,进一步提升跟踪的鲁棒性和准确性。实验部分,构建了遮挡车辆跟踪(Occluded Vehicle Tracking,OVT)数据集,分别在目标跟踪基准(Object Tracking Benchmark,OTB)数据集、TColor-128公开数据集和自建OVT数据集上同高效卷积跟踪(Efficient Convolution Operators for Tracking,ECO)算法、ECO轻量化版本(Efficient Convolution Operators for Tracking Using HOG and CN,ECOHC)、相关滤波(Kernelized Correlation Filters Tracker,KCF)算法、判别式尺度空间跟踪(Discriminative Scale Space Tracker,DSST)算法、循环结构核跟踪(Circulant Structure Kernel Tracker,CSK)算法、层次相关滤波跟踪(Hierarchical Convolutional Features for Visual Tracking,HCFT)算法、基于分层卷积特征的鲁棒视觉跟踪(Robust Visual Tracking via Hierarchical Convolutional Features,HCFTstar)算法、全卷积孪生网络跟踪(Fully-Convolutional Siamese Networks for Object Tracking,SiameseFC)算法和抗干扰感知孪生网络跟踪(Distractor-Aware Siamese Networks for Object Tracking,DaSiam)算法9种主流算法进行实验对比,实验结果表明CKO-OVT算法在OTB数据集上距离精确率提升了2.2%,重叠成功率提升了1.8%;在TColor-128数据集上距离精确率提升了0.4%,重叠成功率提升了0.9%;在OVT数据集上距离精确率提升了1.7%,重叠成功率提升了1.2%。CKO-OVT算法通过自适应卷积核优选和判别式孪生网络,显著提升了遮挡场景下车辆跟踪的鲁棒性和准确性,在OTB、TColor-128和自建OVT数据集上的实验结果表明,CKO-OVT算法在距离精确率和重叠成功率上优于主流跟踪算法,为智能交通和自动驾驶领域的车辆跟踪提供了有效的解决方案。展开更多
针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(...针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(re-parameterization multi-scale large kernel convolution)。该网络通过空间和通道重构注意力模块,将注意值集中到对检测任务更重要的区域。通过Sobel算子强化边缘特征,提高对不同姿态人体的检测能力。RML-YOLO的有效性在自制数据集上得到验证。在只有1.8×10~6可学习参数的情况下,模型的AP50和AP50-75分别达到了91.2%和87.3%,与参数量相近的YOLOv8-n相比分别提高了4.4%和5.3%。结果表明,RML-YOLO显著提高了利用红外图像进行废墟环境下人体检测的精度。展开更多
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo...针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。展开更多
针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分...针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.展开更多
文摘针对遮挡场景下车辆跟踪精度下降的问题,提出了一种基于卷积核优选的遮挡车辆跟踪(Convolutional Kernel Optimization for Occluded Vehicle Tracking,CKO-OVT)算法。CKO-OVT算法通过卷积核优选策略自适应挑选出对车辆目标更为敏感的卷积算子进行特征提取,通过判别式孪生网络对跟踪结果进行评估并在跟踪失效的情况下重定位目标,进一步提升跟踪的鲁棒性和准确性。实验部分,构建了遮挡车辆跟踪(Occluded Vehicle Tracking,OVT)数据集,分别在目标跟踪基准(Object Tracking Benchmark,OTB)数据集、TColor-128公开数据集和自建OVT数据集上同高效卷积跟踪(Efficient Convolution Operators for Tracking,ECO)算法、ECO轻量化版本(Efficient Convolution Operators for Tracking Using HOG and CN,ECOHC)、相关滤波(Kernelized Correlation Filters Tracker,KCF)算法、判别式尺度空间跟踪(Discriminative Scale Space Tracker,DSST)算法、循环结构核跟踪(Circulant Structure Kernel Tracker,CSK)算法、层次相关滤波跟踪(Hierarchical Convolutional Features for Visual Tracking,HCFT)算法、基于分层卷积特征的鲁棒视觉跟踪(Robust Visual Tracking via Hierarchical Convolutional Features,HCFTstar)算法、全卷积孪生网络跟踪(Fully-Convolutional Siamese Networks for Object Tracking,SiameseFC)算法和抗干扰感知孪生网络跟踪(Distractor-Aware Siamese Networks for Object Tracking,DaSiam)算法9种主流算法进行实验对比,实验结果表明CKO-OVT算法在OTB数据集上距离精确率提升了2.2%,重叠成功率提升了1.8%;在TColor-128数据集上距离精确率提升了0.4%,重叠成功率提升了0.9%;在OVT数据集上距离精确率提升了1.7%,重叠成功率提升了1.2%。CKO-OVT算法通过自适应卷积核优选和判别式孪生网络,显著提升了遮挡场景下车辆跟踪的鲁棒性和准确性,在OTB、TColor-128和自建OVT数据集上的实验结果表明,CKO-OVT算法在距离精确率和重叠成功率上优于主流跟踪算法,为智能交通和自动驾驶领域的车辆跟踪提供了有效的解决方案。
文摘针对废墟环境下红外图像人体检测任务中存在的图像分辨率低且人体特征不明显的问题,基于YOLO框架设计了一种包含重参数化(re-parameterization)和多尺度大核卷积(multi-scale large kernel convolution)的红外图像人体检测网络RML-YOLO(re-parameterization multi-scale large kernel convolution)。该网络通过空间和通道重构注意力模块,将注意值集中到对检测任务更重要的区域。通过Sobel算子强化边缘特征,提高对不同姿态人体的检测能力。RML-YOLO的有效性在自制数据集上得到验证。在只有1.8×10~6可学习参数的情况下,模型的AP50和AP50-75分别达到了91.2%和87.3%,与参数量相近的YOLOv8-n相比分别提高了4.4%和5.3%。结果表明,RML-YOLO显著提高了利用红外图像进行废墟环境下人体检测的精度。
文摘针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。
文摘针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.