Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评...Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评估计算。首先,构造反映系统运行状态的特征向量,建立基于CNN的系统失负荷量回归模型;其次,针对可靠性评估样本不均衡、回归训练效率低的问题,进一步建立系统状态分类器,形成基于CNN的分类-回归模型;此外,针对CNN训练样本和实际评估样本不一致的问题,提出分类结果矫正机制,进一步提升模型的实用性;最后,通过改编IEEE-RTS系统的计算分析验证了所提方法的有效性和优越性。展开更多
电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结...电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结构下系统的暂态稳定情况评估。为解决该问题,首先,提出了一种模型更新机制,按照不同条件对模型进行更新;其次,引入了基于多面近端支持向量机(multisurface proximal support vector machine,MPSVM)的斜双随机森林(oblique double random forest with MPSVM,MPDRF)模型,并将其作为分类器对电力系统的稳定状态进行评估;最后,在新英格兰10机39节点系统上的进行仿真测试,验证该方法的有效性。研究结果表明,所提的结合更新机制的电力系统暂态稳定评估方法的评估性能优于普通方法的。展开更多
文摘电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结构下系统的暂态稳定情况评估。为解决该问题,首先,提出了一种模型更新机制,按照不同条件对模型进行更新;其次,引入了基于多面近端支持向量机(multisurface proximal support vector machine,MPSVM)的斜双随机森林(oblique double random forest with MPSVM,MPDRF)模型,并将其作为分类器对电力系统的稳定状态进行评估;最后,在新英格兰10机39节点系统上的进行仿真测试,验证该方法的有效性。研究结果表明,所提的结合更新机制的电力系统暂态稳定评估方法的评估性能优于普通方法的。