期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
增强特征表示的绝缘子缺陷检测方法
1
作者 李丽芬 王明 +1 位作者 曹旺斌 梅华威 《计算机工程与设计》 北大核心 2025年第8期2373-2379,共7页
针对绝缘子缺陷目标区域较小、部分缺陷特征相似,从而导致检测精度较低的问题,提出了一种特征表示增强模型(FLDM-YOLO)。该模型基于FasterNet重构特征提取网络并且结合大核可分离注意力(LSKA)设计了SPPF-LSKA模块,增强了对目标的特征提... 针对绝缘子缺陷目标区域较小、部分缺陷特征相似,从而导致检测精度较低的问题,提出了一种特征表示增强模型(FLDM-YOLO)。该模型基于FasterNet重构特征提取网络并且结合大核可分离注意力(LSKA)设计了SPPF-LSKA模块,增强了对目标的特征提取能力;以重参数化技术为基础,提出了C2f-DBB模块,处理目标缺陷特征相似的问题;在边界框回归阶段使用MPDIoU作为损失函数,使得模型更加关注高质量锚框。实验结果表明,FLDM-YOLO模型在保证一定检测速度的前提下,mAP为91.3%,较YOLOv8模型提高了4.2%,可有效应用于实际的巡检工作。 展开更多
关键词 目标检测 绝缘子 部分卷积 主干特征提取网络 大核可分离注意力 重参数化 边界框损失函数
在线阅读 下载PDF
多尺度YOLOv5算法检测锂离子电池表面缺陷
2
作者 朱永平 程博 +1 位作者 熊聪 丁聪 《电池》 北大核心 2025年第1期71-77,共7页
针对软包装锂离子电池表面缺陷特征尺度不一、缺陷检测时小目标检测效果差的问题,提出基于改进YOLOv5的软包装锂离子电池表面缺陷检测算法。首先,将感受野注意力卷积(RFCAConv)融合到Bottleneck结构中,并替换主干网络中的卷积层(Conv),... 针对软包装锂离子电池表面缺陷特征尺度不一、缺陷检测时小目标检测效果差的问题,提出基于改进YOLOv5的软包装锂离子电池表面缺陷检测算法。首先,将感受野注意力卷积(RFCAConv)融合到Bottleneck结构中,并替换主干网络中的卷积层(Conv),通过有效提取感受野空间特征,提升模型整体性能;其次,将大型可分离核注意力(LSKA)融合到快速空间金字塔池化(SPPF)模块中,增强多尺度特征的提取能力;最后,将P2目标检测层融入路径聚合网络(PANet),提高模型对边缘细节信息的抓取能力,增强模型对小尺度缺陷特征的提取能力。改进后的YOLOv5s算法,均值平均精度为89.1%,较原模型提高4.8个百分点,每秒帧数达40.0,能够满足软包锂离子电池表面缺陷实时检测的需求。 展开更多
关键词 YOLOv5算法 锂离子电池 缺陷检测 感受野注意力卷积(RFCAConv) 可分离大核注意力 P2检测层
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部