期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
大子午扩张涡轮端区的流动传热及端区正弯效果的数值研究 被引量:9
1
作者 孟福生 高杰 +2 位作者 郑群 付维亮 刘学峥 《推进技术》 EI CAS CSCD 北大核心 2019年第6期1247-1255,共9页
为了研究大子午扩张涡轮端区流动和传热特性,并研究叶片端区正弯技术在大子午扩张涡轮中的气动和传热效果,对某大子午扩张涡轮静叶进行数值模拟。运用SST湍流模型精确捕捉流动结构,并进行了气动和传热预测的有效性实验验证。通过分析结... 为了研究大子午扩张涡轮端区流动和传热特性,并研究叶片端区正弯技术在大子午扩张涡轮中的气动和传热效果,对某大子午扩张涡轮静叶进行数值模拟。运用SST湍流模型精确捕捉流动结构,并进行了气动和传热预测的有效性实验验证。通过分析结果,对大子午扩张涡轮端区流动和传热特性以及两者相互影响关系进行了深入研究,分析了端区正弯技术在重组大子午扩张涡轮端区流动以及合理分布热负荷的应用效果。结果表明:大子午扩张端壁导致涡轮端壁附面层的强烈分离,通道涡分离点提前约15%,高传热区受马蹄涡和通道涡的强烈影响;端区正弯有效地改善了大子午扩张静叶端壁的附面层分离,减小前缘的热负荷25%,提高涡轮的气热性能。 展开更多
关键词 大子午扩张涡轮 端区流动 传热特性 数值模拟 端区正弯
在线阅读 下载PDF
大子午扩张涡轮扇形叶栅变工况性能实验研究 被引量:7
2
作者 孟福生 高杰 +2 位作者 郑群 付维亮 刘学峥 《推进技术》 EI CAS CSCD 北大核心 2019年第5期986-995,共10页
为了研究大子午扩张低压涡轮变工况下的流动性能,分别对大子午扩张低压涡轮的两套不同的扇形叶栅进行气动实验研究。在设计进口气流角条件下,分别进行不同高亚声速马赫数出口变工况实验研究;在出口马赫数不变的条件下,完成变攻角实验。... 为了研究大子午扩张低压涡轮变工况下的流动性能,分别对大子午扩张低压涡轮的两套不同的扇形叶栅进行气动实验研究。在设计进口气流角条件下,分别进行不同高亚声速马赫数出口变工况实验研究;在出口马赫数不变的条件下,完成变攻角实验。分析了大子午叶栅流动损失特点和二次流的影响规律。结果表明:大子午扩张实验叶栅出口存在两个明显的高损失通道涡,上通道涡位于展向1/3位置,远离上端壁,且强度明显大于下通道涡。随着马赫数增加,叶栅出口流动损失增加了15%。大子午扩张涡轮端壁曲率影响近端壁叶片的压强分布和变工况敏感性,优化端壁曲率将有助于流动状态的改善。 展开更多
关键词 大子午扩张涡轮 扇形叶栅 高亚声速 变工况 气动性能实验
在线阅读 下载PDF
子午修型对1.5级大子午扩张涡轮端区流动传热性能影响研究 被引量:1
3
作者 宋义康 孟福生 +3 位作者 曹福堃 马国骏 杜玉峰 高杰 《推进技术》 EI CAS CSCD 北大核心 2021年第8期1786-1797,共12页
大子午扩张涡轮由于子午型线扩张度较大,因而易导致端区边界层分离及热集中,针对这个现象,采用数值模拟方法,并采用正弦曲线对1.5级大子午扩张涡轮子午型线采取了8种修型方案,研究子午修型对于端区流动传热性能的影响。计算结果表明,子... 大子午扩张涡轮由于子午型线扩张度较大,因而易导致端区边界层分离及热集中,针对这个现象,采用数值模拟方法,并采用正弦曲线对1.5级大子午扩张涡轮子午型线采取了8种修型方案,研究子午修型对于端区流动传热性能的影响。计算结果表明,子午修型可以有效地控制端区的分离流动,从而影响着通道涡与脱落涡强度及位置,也影响着端壁及叶片上热负荷分布。在本文研究条件下,振幅为三分之一叶片最大厚度的前凹后凸子午型线有效地减弱了脱落涡引起的损失,进而使整体总压损失减小6.06%,并可以减弱端壁及叶片传热集中,使叶片最大热负荷减轻21%。 展开更多
关键词 修型 1.5级大子午扩张涡轮 端区流动 分离控制 传热特性
在线阅读 下载PDF
绊线对大子午扩张涡轮端壁的气动及传热性能影响研究
4
作者 杜玉锋 孟福生 +3 位作者 马国骏 宋义康 高杰 郑群 《推进技术》 EI CAS CSCD 北大核心 2021年第5期1031-1039,共9页
为了探究绊线对大子午扩张涡轮端壁边界层分离和马蹄涡的削弱效果,分析绊线对大子午扩张涡轮端壁传热特性的影响,针对1.5级涡轮应用SST湍流模型对端壁流动进行精细捕捉,并进行了气动和传热的有效性实验验证。结果显示:绊线减弱了叶片前... 为了探究绊线对大子午扩张涡轮端壁边界层分离和马蹄涡的削弱效果,分析绊线对大子午扩张涡轮端壁传热特性的影响,针对1.5级涡轮应用SST湍流模型对端壁流动进行精细捕捉,并进行了气动和传热的有效性实验验证。结果显示:绊线减弱了叶片前缘驻点高压区,使得上端壁分离点位置提前。绊线增强了来自涡轮动叶的泄漏涡强度,但极大地削弱上通道涡。此外,中间位置绊线使得总压损失降低了2.28%。叶片前缘热负荷增加,Trip(5.3%E)绊线使得叶片表面热通量降低1.66%。大体上讲,绊线的引入减小了大子午扩张涡轮通道涡等二次流的影响,优化了大子午扩张涡轮的流场,降低了叶片表面换热量。 展开更多
关键词 大子午扩张涡轮 绊线 马蹄涡 总压损失 流动传热特性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部