Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utiliz...Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.展开更多
基金National Natural Science Foundation of China(62471097,62471115,62471101)Natural Science Foundation of Sichuan Province(2025ZNSFSC0537)Stable Support Porject of 12th Research Institute of China Electronics Technology Group Corporation。
文摘Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.