深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言...深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。展开更多
得益于近期具有世界知识的大规模预训练模型的迅速发展,基于大模型的具身智能在各类任务中取得了良好的效果,展现出强大的泛化能力与在各领域内广阔的应用前景.鉴于此,对基于大模型的具身智能的工作进行了综述,首先,介绍大模型在具身智...得益于近期具有世界知识的大规模预训练模型的迅速发展,基于大模型的具身智能在各类任务中取得了良好的效果,展现出强大的泛化能力与在各领域内广阔的应用前景.鉴于此,对基于大模型的具身智能的工作进行了综述,首先,介绍大模型在具身智能系统中起到的感知与理解作用;其次,对大模型在具身智能中参与的需求级、任务级、规划级和动作级的控制进行了较为全面的总结;然后,对不同具身智能系统架构进行介绍,并总结了目前具身智能模型的数据来源,包括模拟器、模仿学习以及视频学习;最后,对基于大语言模型(Large language model,LLM)的具身智能系统面临的挑战与发展方向进行讨论与总结.展开更多
文摘深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。
文摘得益于近期具有世界知识的大规模预训练模型的迅速发展,基于大模型的具身智能在各类任务中取得了良好的效果,展现出强大的泛化能力与在各领域内广阔的应用前景.鉴于此,对基于大模型的具身智能的工作进行了综述,首先,介绍大模型在具身智能系统中起到的感知与理解作用;其次,对大模型在具身智能中参与的需求级、任务级、规划级和动作级的控制进行了较为全面的总结;然后,对不同具身智能系统架构进行介绍,并总结了目前具身智能模型的数据来源,包括模拟器、模仿学习以及视频学习;最后,对基于大语言模型(Large language model,LLM)的具身智能系统面临的挑战与发展方向进行讨论与总结.