期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于多层次瓶颈注意力模块的颅骨到面皮的生成方法
1
作者 王洁 姜文凯 +3 位作者 蒋佳琪 梁增磊 刘晓宁 耿国华 《西北大学学报(自然科学版)》 北大核心 2025年第1期201-212,共12页
从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对... 从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对抗网络和多层次瓶颈注意力模块的颅骨到面皮图像生成方法。该方法的生成器由6层AdaResBlock和瓶颈注意力模块组成,从通道和空间两个维度引导生成器关注更重要的区域,并根据特征自适应地调整归一化方式。同时,针对生成器模型较大的问题,引入蓝图可分离卷积减小其体积。此外,将判别器分为两部分,前几层被用来进行编码,取消传统网络中的单独编码器模块,使模型更紧凑;后几层则采用多尺度判别策略,从不同层级对图像进行分类判别,增强其准确性。实验结果表明,在颅骨到面皮图像生成任务上,该方法生成的面皮图像质量高于现有的其他方法,在视觉质量和图像质量上都取得了最高的分数,复原效果更加真实,图像定量评价指标PSNR、SSIM平均提升1.115,0.017,LPIPS平均降低0.026,面皮平均相似度为0.855。 展开更多
关键词 颅面生成 生成对抗网络 图像转换 瓶颈注意力模块 蓝图可分离卷积
在线阅读 下载PDF
基于解耦注意力与幻影卷积的轻量级人体姿态估计 被引量:1
2
作者 陈俊颖 郭士杰 陈玲玲 《计算机应用》 北大核心 2025年第1期223-233,共11页
随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影... 随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP^(50)的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。 展开更多
关键词 人体姿态估计 轻量级网络 注意力机制 幻影卷积 深度可分离卷积模块
在线阅读 下载PDF
融合空间分割注意力的织物材质识别方法 被引量:1
3
作者 南科良 靳雁霞 +3 位作者 王松松 王婷 张晓竺 张壮威 《现代纺织技术》 北大核心 2024年第12期58-67,共10页
针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算... 针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算织物图像中同一像素点在时间前后的位移量,将织物图像进行区域划分。将处理后的图像输入到注意力网络中进行特征提取,采取深度可分离卷积(DSC)替代普通卷积,以减少网络参数与计算量,增强网络的特征提取能力。然后在每个卷积层后引入空间分割注意力模块(SPAM)来增强重要特征,防止特征图信息丢失过多,提升网络精度。最后通过全局平均池化层和softmax层实现织物材质的识别。结果表明:所提出的织物材质识别算法能够快速、有效地对织物材质进行分类识别,准确率达到93.9%,单张图片检测时间为83.14 ms,在保证识别精度的同时具有较强的实时性。 展开更多
关键词 织物材质识别 空间分割注意力模块 区域划分 卷积神经网络 深度可分离卷积
在线阅读 下载PDF
基于多尺度融合注意力改进UNet的遥感图像水体分割 被引量:7
4
作者 石甜甜 郭中华 +1 位作者 闫翔 魏士钦 《液晶与显示》 CAS CSCD 北大核心 2023年第3期397-408,共12页
针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题... 针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题,设计了一种多尺度融合注意力模块(MSFAM),该模块使用点卷积融合通道全局信息、深度可分离卷积弥补全局池化造成的信息丢失。MSFAM用于UNet跳跃连接后的特征融合部分重新分配特征点权重以提高特征融合效率,增强网络获取不同尺度信息的能力。其次,空洞卷积用于VGG16主干网络扩展感受野,在不损失分辨率的情况下聚合全局信息。结果表明,A-MSFAM-UNet优于其他通道注意力(SENet、ECANet)改进的UNet,在GF-2水体分割数据集上平均交并比(MIoU)、平均像素精度(MPA)和准确率(Acc)分别达到了96.02%、97.98%和99.26%。 展开更多
关键词 遥感图像 注意力模块 深度可分离卷积 特征融合 空洞卷积
在线阅读 下载PDF
改进注意力机制的电梯场景下危险品检测方法 被引量:6
5
作者 郭奕裕 周箩鱼 +1 位作者 刘新瑜 李尧 《计算机应用》 CSCD 北大核心 2023年第7期2295-2302,共8页
针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高... 针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高效卷积块注意力模块(ECBAM)并嵌入主干特征提取网络中。在ECBAM模块的通道注意力部分,使用一维卷积替换两个全连接层,既降低了卷积块注意力模块(CBAM)的复杂度又提高了检测精度。最后提出一种多帧协同算法,通过结合多张图片的危险品检测结果以减少危险品入侵电梯的误报警。实验结果表明:改进后模型比YOLOX-s的平均精度均值(mAP)提升了1.05个百分点,浮点计算量降低了34.1%,模型体积减小了42.8%。可见改进后模型降低了实际应用中的误报警,且满足电梯场景下危险品检测的精度和速度要求。 展开更多
关键词 危险品检测 电梯 YOLOX-s 深度可分离卷积 高效卷积块注意力模块 一维卷积 多帧协同算法
在线阅读 下载PDF
基于通道注意力和边缘融合的伪装目标分割方法 被引量:2
6
作者 詹春兰 王安志 王明辉 《计算机应用》 CSCD 北大核心 2023年第7期2166-2172,共7页
伪装目标分割(COS)的目标是从背景中分离出隐藏的目标对象。近年来,基于卷积神经网络(CNN)的伪装目标检测(COD)发展迅速,然而仍存在无法从前/背景高度相似的场景中准确地检测出完整目标对象的问题。针对上述问题,提出一种基于通道注意力... 伪装目标分割(COS)的目标是从背景中分离出隐藏的目标对象。近年来,基于卷积神经网络(CNN)的伪装目标检测(COD)发展迅速,然而仍存在无法从前/背景高度相似的场景中准确地检测出完整目标对象的问题。针对上述问题,提出一种基于通道注意力(CA)和边缘融合的COS方法CANet(Network based on Channel Attention and edge fusion),以得到伪装目标的边缘细节更清晰的完整分割结果。首先,引入压缩和激励(SE)注意力模块,以提取更丰富的高级语义特征;其次,提出一个边缘融合模块,抑制低级特征中的干扰,并充分利用图像的边缘细节信息;最后,设计了基于深度可分离卷积的通道注意力模块,以自上而下的方式逐步融合跨级的多尺度特征,进一步地提升检测精度和效率。在多个公开的COD数据集上的实验结果表明,相较于SINet(Search Identification Net)、TINet(Textureaware Interactive guidance Network)和C2FNet(Context-aware Cross-level Fusion Network)等8种主流的方法,CANet表现更佳,且能够获取到丰富的伪装目标内部及边缘细节信息,而且在具有挑战性的COD10K数据集上结构度量指标相较于SINet提升了2.6个百分点。CANet性能优越,适用于医学上检测与人体组织相似的病灶区域、军事领域检测隐蔽目标等相关领域。 展开更多
关键词 伪装目标分割 边缘融合 压缩和激励注意力模块 深度可分离卷积 多尺度特征
在线阅读 下载PDF
面向表情识别的重影非对称残差注意力网络模型 被引量:2
7
作者 闫河 李梦雪 +1 位作者 张宇宁 刘建骐 《智能系统学报》 CSCD 北大核心 2023年第2期333-340,共8页
针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提... 针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提升主干分支的特征提取能力;利用Mish激活函数替换Bottleneck中的ReLU激活函数,提高了表情识别的准确率;在此基础上,通过在改进的Bottleneck之间添加非对称残差注意力模块(asymmetric residual attention block, ARABlock)来提升模型对重要信息的表示能力,从而提出一种面向表情识别的重影非对称残差注意力网络(ghost asymmetric residual attention network, GARAN)模型。对比实验结果表明,本文方法在FER2013和CK+表情数据集上具有较高的识别准确率。 展开更多
关键词 表情识别 特征提取 ResNet50 Ghost模块 Mish 非对称残差注意力 深度可分离卷积 深度学习
在线阅读 下载PDF
基于EE-YOLOv8s的多场景火灾迹象检测算法 被引量:1
8
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别
9
作者 毛清华 杨帆 +4 位作者 王超 仝旭耀 童军伟 张旭辉 薛旭升 《工矿自动化》 北大核心 2025年第4期100-106,152,共8页
针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损... 针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损伤特征与油污背景的空间特征区分能力,提升模型抗干扰能力;将YOLOv8n原有的3个检测头替换为4个轻量化小目标检测头,强化对小目标损伤的识别能力;采用深度可分离卷积(DSConv)替代标准卷积,减少了计算量,提高了识别速度。实验结果表明:改进YOLOv8n模型的平均精度均值(mAP)、识别精度和推理速度分别达92.6%,89.7%和43.5帧/s,相比YOLOv8n模型分别提高了3.1%,4.9%,34.7%;与Faster-RCNN,YOLOv5s,YOLOv8n,YOLOv10m,TWRD-Net,YOLOv5-TPH等主流模型相比,改进YOLOv8n模型对小目标损伤识别精度最高,同时保证了较高的实时性;在煤矿现场油污覆盖、绳股间隙较大的复杂场景中,改进YOLOv8n模型未出现漏检情况,且误检情况较少,平均识别准确率达90%。 展开更多
关键词 矿用提升钢丝绳 损伤图像识别 YOLOv8n 多尺度注意力模块 小目标检测 深度可分离卷积
在线阅读 下载PDF
CSD-YOLOv8的输电线路故障目标检测
10
作者 马旭 王锐 +6 位作者 邓军 常驰 郝帅 李添麒 刘峥岐 李国亮 赵晴 《西安科技大学学报》 北大核心 2025年第2期383-392,共10页
针对无人机巡检输电线路过程中待检测目标受复杂背景干扰、故障目标部分遮挡以及目标多尺度造成传统算法难以准确检测的问题,提出一种基于CSD-YOLOv8的输电线路故障目标检测方法。首先,以YOLOv8网络作为基础框架,并在其主干网络中引入... 针对无人机巡检输电线路过程中待检测目标受复杂背景干扰、故障目标部分遮挡以及目标多尺度造成传统算法难以准确检测的问题,提出一种基于CSD-YOLOv8的输电线路故障目标检测方法。首先,以YOLOv8网络作为基础框架,并在其主干网络中引入空间金字塔池化将不同尺度特征进行融合;然后,在检测网络头部中引入深度可分离卷积,并将其与交叉卷积连接模块结合,实现对部分遮挡目标的准确检测;此外,设计基于通道注意力机制的特征融合模块对不同层级特征进行加权融合,提高复杂背景下故障目标特征信息提取能力;最后,利用某电力巡检部门近5年的巡检数据对所提出算法进行验证。结果表明:相比于4种经典对比算法,所提方法在对12种故障类型检测效果的综合指标最好,平均检测精度为94.7%,召回率为93.0%。与此同时,所提算法具有较好的实时性,对于分辨率为1280×720的图像检测速度为45帧/s,为输电线路的智能巡检奠定了坚实的理论基础。 展开更多
关键词 YOLOv8 多尺度检测 通道注意力机制 特征融合 深度可分离模块
在线阅读 下载PDF
基于MAFM-YOLOv8的学生课堂表现检测
11
作者 莫建文 姜贵昀 +1 位作者 袁华 梁豪昌 《计算机工程与设计》 北大核心 2025年第6期1825-1831,共7页
针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的... 针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的自适应特征提取能力,用深度可分离卷积代替普通卷积,减少模块中卷积的计算量;采用高效多尺度注意力模块,增强模型对小目标的特征提取能力;采用WIOU损失函数来增强模型在类别不均衡数据集上的训练效果,提升检测性能。实验结果表明,改进YOLOv8算法在学生课堂表现检测中mAP50达到了87.2%,相比原模型提升了3.2%,验证该方法可以有效提高检测精度。 展开更多
关键词 智慧教室 学生课堂表现检测 MAFM-YOLOv8 多尺度自适应特征提取模块 深度可分离卷积 高效多尺度注意力 WIOU损失函数
在线阅读 下载PDF
基于融合CNN和Transformer的分离结构机器翻译模型 被引量:10
12
作者 葛君伟 涂兆昊 方义秋 《计算机应用研究》 CSCD 北大核心 2022年第2期432-435,共4页
针对基于Transformer的机器翻译模型中存在的运行效率不高、计算参数过大以及计算复杂度过高的问题,提出一种基于融合CNN和Transformer的分离结构机器翻译模型。首先,对于运行效率不高和计算参数过大的问题,使用计算注意力模块和归一化... 针对基于Transformer的机器翻译模型中存在的运行效率不高、计算参数过大以及计算复杂度过高的问题,提出一种基于融合CNN和Transformer的分离结构机器翻译模型。首先,对于运行效率不高和计算参数过大的问题,使用计算注意力模块和归一化模块分离的结构保证堆叠多层结构的可复用性,提高运行效率和降低计算参数。其次,引入了卷积计算模块和原始自注意力模块进行融合,原始自注意力模块用于计算全局上下文语义关系,卷积计算模块用于计算局部上下文语义关系,降低模型的复杂度。与其他机器翻译模型在相同的数据集进行实验对比,实验结果表明,该模型的计算参数最低,效果也比其他模型表现得更好。 展开更多
关键词 卷积注意力 模块分离 机器翻译
在线阅读 下载PDF
联合边缘特征的物流驾驶员危险行为识别
13
作者 侯贵捷 王呈 +1 位作者 夏源 杜林 《计算机应用研究》 北大核心 2025年第4期1255-1261,共7页
准确识别物流驾驶员接打电话等危险行为是实现生产安全的重要一环。针对工业现场背景复杂、驾驶员手臂动作相似度高等问题,提出一种联合边缘特征的物流驾驶员危险行为识别算法EF-GCN(edge feature graph convolutional network)。首先,... 准确识别物流驾驶员接打电话等危险行为是实现生产安全的重要一环。针对工业现场背景复杂、驾驶员手臂动作相似度高等问题,提出一种联合边缘特征的物流驾驶员危险行为识别算法EF-GCN(edge feature graph convolutional network)。首先,提出基于自适应图卷积的空间感知模块,考虑人体运动过程中远离质心的边缘关节点,设计空间感知算法以提高权重分配。其次,设计时空边缘注意力模块,在时空均值化后添加边缘卷积,改善模型对边缘特征提取不充分的缺点;同时,引入可分离卷积SC block(separable convolution block),替换主干网络中的标准卷积,减少模型参数量。最后,构建相似特征识别网络SF-RN(similar feature recognition network),对接打电话、抽烟等手臂相似行为进行区分,强化算法对相似行为的识别能力。实验结果表明,EF-GCN较传统的时空图卷积网络识别精度提高10.4百分点,较基线模型提升3.2百分点,能够准确识别物流驾驶员的危险行为,验证了算法的有效性。 展开更多
关键词 边缘特征 空间感知 注意力模块 可分离卷积 相似特征识别
在线阅读 下载PDF
智慧教育下基于改进YOLOv8的学生课堂行为检测算法 被引量:7
14
作者 曾钰琦 刘博 +1 位作者 钟柏昌 钟瑾 《计算机工程》 CAS CSCD 北大核心 2024年第9期344-355,共12页
为了加快教育的数字化转型,人工智能技术融入教与学全过程行为的精准分析与实证应用已成为当前的研究热点。针对目前学生课堂行为检测中存在的检测精度低、目标框密度高、重叠遮挡严重、尺度变化大以及数据量不平衡等问题,创建学生课堂... 为了加快教育的数字化转型,人工智能技术融入教与学全过程行为的精准分析与实证应用已成为当前的研究热点。针对目前学生课堂行为检测中存在的检测精度低、目标框密度高、重叠遮挡严重、尺度变化大以及数据量不平衡等问题,创建学生课堂行为数据集DBS Dataset,并提出一种基于改进YOLOv8的学生课堂行为检测算法VWE-YOLOv8。首先引入注意力机制CSWin-Transformer,增强模型对图像全局信息的提取能力,提高网络的检测精度;然后集成大可分离核心注意力(LSKA)模块到SPPF架构中,增加模型在多尺度目标上的识别能力;接着将遮挡感知注意力机制融入到检测头的设计中,将原有的Head结构修改为SEAMHead,实现模型对遮挡物体的有效检测;最后引入权重调整函数Slide Loss来处理样本不均衡问题。实验结果表明,与YOLOv8相比,在DBS Dataset和公开数据集SCB Dataset上,改进后VWE-YOLOv8的mAP@0.50分别提高了1.16%、1.70%,mAP@0.50∶0.95分别提高了7.36%、2.13%,精度分别提升了4.17%、6.74%,召回率分别提升了1.96%、3.13%,说明该算法具有更高的检测精度和较强的泛化能力,能够胜任学生课堂行为的检测任务,有力支撑智慧教育应用,助力教育数字化转型。 展开更多
关键词 智慧教育 学生行为检测 目标检测 注意力机制 大可分离核心注意力模块
在线阅读 下载PDF
基于改进卷积神经网络的小目标检测算法 被引量:1
15
作者 张明 余志强 《计算机应用与软件》 北大核心 2024年第9期166-174,共9页
对于在检测时存在小尺度检测目标漏检、不精确等问题,提出一种改进的YOLO v4算法模型(F-YOLO v4)。利用改进的K均值聚类算法对数据集进行聚类,使得锚点框的大小更适用于目标检测;采用深度卷积和逐点卷积相结合的方法对通道内和通道间的... 对于在检测时存在小尺度检测目标漏检、不精确等问题,提出一种改进的YOLO v4算法模型(F-YOLO v4)。利用改进的K均值聚类算法对数据集进行聚类,使得锚点框的大小更适用于目标检测;采用深度卷积和逐点卷积相结合的方法对通道内和通道间的卷积进行分离,从而改善了原有的残差块;采用通道注意力机制对骨干网络进行改进的同时在PANet网络中添加RFB模块,增强特征提取能力,从而提高了对小目标的检测效果。实验结果表明,F-YOLO v4算法在KITTI数据集上平均精度均值达到了93.67%,与原算法对比提高了1.52百分点,并且比较目前其他主流网络有着较高的精确度。 展开更多
关键词 改进的YOLO v4算法 深度可分离卷积 注意力机制 RFB模块 小目标检测
在线阅读 下载PDF
基于改进YOLOv8s的轻量化数控刀具检测
16
作者 向传龙 胥云 +1 位作者 李琦 罗辉 《组合机床与自动化加工技术》 北大核心 2024年第8期107-111,共5页
针对使用机器视觉技术检测数控加工中心刀库故障,伴随出现的加工中心内部环境复杂、背景干扰性强及终端计算资源有限等问题,提出一种改进YOLOv8s的数控刀具类别检测算法。首先,针对终端计算资源有限的问题,重构骨干网络,使用深度可分离... 针对使用机器视觉技术检测数控加工中心刀库故障,伴随出现的加工中心内部环境复杂、背景干扰性强及终端计算资源有限等问题,提出一种改进YOLOv8s的数控刀具类别检测算法。首先,针对终端计算资源有限的问题,重构骨干网络,使用深度可分离卷积替换骨干网络,剔除颈部网络大目标监测层,降低模型计算量;其次,针对加工中心内部环境复杂、背景干扰性强的问题,在骨干网络末端加入RepLKCAG模块,在颈部网络加入全局注意力机制(GAM),增强特征提取的能力,提高检测精度。在自制数据集上实验结果显示,改进的算法相较于YOLOv8s算法模型计算量减小34.15%,精度提高至96.1%,mAP50提高0.5%。 展开更多
关键词 刀库故障 YOLOv8 深度可分离卷积 RepLKCAG模块 全局注意力机制
在线阅读 下载PDF
基于改进YOLOv4的蔗种坏芽识别方法研究
17
作者 沈漫林 刘姣娣 +2 位作者 许洪振 何捷 段玉龙 《中国农机化学报》 北大核心 2024年第9期190-195,共6页
为实现蔗种切种机构对坏芽蔗种实时检测剔除,提出一种基于改进YOLOv4的蔗种坏芽快速识别方法。通过在YOLOv4主干网络添加轻量的注意力模块(CBAM),以增强网络提取蔗芽特征能力,降低背景噪声对蔗芽识别精度的影响;并利用K-means算法对数... 为实现蔗种切种机构对坏芽蔗种实时检测剔除,提出一种基于改进YOLOv4的蔗种坏芽快速识别方法。通过在YOLOv4主干网络添加轻量的注意力模块(CBAM),以增强网络提取蔗芽特征能力,降低背景噪声对蔗芽识别精度的影响;并利用K-means算法对数据集重新聚类,生成符合蔗芽特征的锚定框,提高蔗种坏芽检测精度;将路径聚合网络中原有的标准卷积替换为深度可分离卷积,大幅减少参数降低计算负荷,整体识别速度得到提升。测试结果表明:改进后的网络模型比YOLOv4精确率提高3.12%,平均精确率均值提高4.15%,召回率提高3.69%,单张图像识别时间缩短7 ms。改进后算法实现对蔗种坏芽的快速准确识别,满足切种机构实时检测并剔除蔗种坏芽的需求。 展开更多
关键词 蔗种坏芽 改进网络 切种机构 注意力模块 聚类算法 深度可分离卷积
在线阅读 下载PDF
基于改进YOLOv4的航空发动机损伤检测方法 被引量:4
18
作者 蔡舒妤 闫子砚 师利中 《现代制造工程》 CSCD 北大核心 2023年第2期99-108,共10页
针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)... 针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)中,将普通卷积重构为逐通道卷积和逐点卷积的形式,有效减少了网络中的冗余参数;为进一步降低模型参数量,使用MobileNetv3作为特征提取网络。在减少参数量的同时,2种轻量化改进方法有效提高了模型的检测速度;在轻量化后的路径聚合网络(Path Aggregation Network,PANet)中加入卷积注意力模块(Convolutional Block Attention Module,CBAM),通过仅引入少量的参数来提高轻量化网络的损伤检测精度。实验结果表明,改进YOLOv4算法的平均精度均值(mean Average Precision,mAP)为89.82%,模型大小为73.29 MB,检测速度为37.3 FPS。与YOLOv4目标检测算法相比,改进YOLOv4算法以3.55%的mAP损失,使模型参数量降低了约2/3,检测速度提高了1.6倍,综合检测性能更优,可更好地满足孔探检测应用的需求,为航空发动机损伤智能化检测提供轻量化模型支撑。 展开更多
关键词 损伤检测 YOLOv4 深度可分离卷积 MobileNetv3 卷积注意力模块
在线阅读 下载PDF
基于多尺度特征拼接的小样本茶叶病害分类 被引量:2
19
作者 张艳 王林茂 +2 位作者 程志友 章杨凡 储著增 《安徽大学学报(自然科学版)》 CAS 北大核心 2022年第5期58-63,共6页
传统的茶叶病害分类是一项耗时耗力的工作.针对该问题,提出一种基于多尺度特征拼接的网络模型,用于小样本茶叶病害分类.通过多尺度注意力模块提取茶叶叶片的显著性特征,进而得到显著性图像.对显著性图像与原始图像进行通道特征拼接,使... 传统的茶叶病害分类是一项耗时耗力的工作.针对该问题,提出一种基于多尺度特征拼接的网络模型,用于小样本茶叶病害分类.通过多尺度注意力模块提取茶叶叶片的显著性特征,进而得到显著性图像.对显著性图像与原始图像进行通道特征拼接,使拼接后的图像既包含全局特征又包含局部特征.融合多个不同卷积层输出的特征,使特征图包含空间和语义信息.分类实验结果表明:用可分离卷积代替常规卷积后,该文模型参量总数小于关系网络模型参量总数的1/2,提高了分类效率;相对于其他5种模型,该文模型分类准确率最高. 展开更多
关键词 茶叶病害分类 多尺度注意力模块 显著性区域 可分离卷积
在线阅读 下载PDF
基于改进U-Net网络的光伏板图像分割方法 被引量:6
20
作者 任喜伟 韩欣 +1 位作者 钟弋 何立风 《陕西科技大学学报》 北大核心 2023年第2期155-161,共7页
光伏板区域识别与分割对光伏板的缺陷精确检测和组件精准定位有重要意义.在复杂环境下,针对光伏板图像存在对比度不强、边界模糊、背景复杂等影响分割的问题,提出了一种改进U-Net网络的光伏板图像分割方法.首先,搭建基于U-Net网络的对... 光伏板区域识别与分割对光伏板的缺陷精确检测和组件精准定位有重要意义.在复杂环境下,针对光伏板图像存在对比度不强、边界模糊、背景复杂等影响分割的问题,提出了一种改进U-Net网络的光伏板图像分割方法.首先,搭建基于U-Net网络的对称编码-解码结构骨干网络;其次,使用深度可分离卷积替代传统卷积,并将高效ECA注意力模块添加到两组深度可分离卷积之间,以两组深度可分离卷积和一个ECA注意力模块组成一个block块,利用多个block块提升多层网络的分割性能;之后,引入交叉熵损失、Dice损失、Focal损失线性加权和作为新的损失函数,训练改进U-Net网络;最后,为验证方法的有效性,将改进U-Net网络与MobileNetV2网络、U-Net网络、Res-U-Net网络分别在3 200张光伏板红外图像数据集上进行横向对比.结果表明:改进U-Net网络的PA值和MIoU值达到了0.993 1和0.980 2,均优于其他3种网络模型,且参数量只有U-Net网络和Res-U-Net网络的33.3%和30.4%,仅次于MobileNetV2网络.因此,改进U-Net网络具有较高的准确性和泛化性,能够完成光伏板图像分割任务. 展开更多
关键词 改进U-Net网络 光伏板图像分割 深度可分离卷积 ECA注意力模块 损失函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部