期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进Yolov8的红外弱小目标识别算法
1
作者 李雪峰 李宁 +2 位作者 吴迪 于祥跃 郭永强 《激光与红外》 北大核心 2025年第5期789-797,共9页
为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三... 为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。 展开更多
关键词 红外弱小目标识别 Yolov8 大内核卷积 三重注意力机制 目标检测
在线阅读 下载PDF
LK-CAUNet:基于交叉注意的大内核多尺度可变形医学图像配准网络 被引量:1
2
作者 程天琪 王雷 +3 位作者 郭新萍 王钰帏 刘春香 李彬 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2023年第6期745-753,共9页
经典的UNet网络可用于预测全分辨率空间域的密集位移场,在医学图像配准中取得了巨大成功。但对大变形的三维图像配准,还存在运行时间长、无法有效保持拓扑结构、空间特征易丢失等缺点。为此,提出一种基于交叉注意的大内核多尺度可变形... 经典的UNet网络可用于预测全分辨率空间域的密集位移场,在医学图像配准中取得了巨大成功。但对大变形的三维图像配准,还存在运行时间长、无法有效保持拓扑结构、空间特征易丢失等缺点。为此,提出一种基于交叉注意的大内核多尺度可变形医学图像配准网络(large kernel multi-scale deformable medical image registration network based on cross-attention,LK-CAUNet)。在经典UNet模型基础上,通过引入交叉注意力模块,实现高效、多层次的语义特征融合;配备大内核非对称并行卷积,使其具有多尺度特征和对复杂结构的学习能力;通过加入平方和缩放模块,实现拓扑守恒和变换可逆。基于脑部MRI数据集,将LK-CAUNet与18种经典图像配准模型进行了比较,结果表明,LK-CAUNet的配准性能较其他模型有明显提升,其Dice得分较TransMorph配准方法提高了8%,而参数量仅为TransMorph的1/5。 展开更多
关键词 医学图像 图像配准 UNet网络 交叉注意力 大内核卷积
在线阅读 下载PDF
复杂场景下无人驾驶障碍检测算法
3
作者 程铄棋 伊力哈木·亚尔买买提 +2 位作者 谢丽蓉 侯雪扬 马颖 《哈尔滨工业大学学报》 北大核心 2025年第6期160-170,共11页
为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷... 为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷积提取空间特征,保证特征的完整性;其次,利用大内核深度卷积层重构快速金字塔池化层,采用并行多尺度连接的方式融合不同分辨率的自注意力特征,增强模型在复杂环境中的特征提取能力;然后,采用多分支结构和重参数化抑制信息干扰,并通过不断堆叠梯度流的方式提升特征融合能力;最后,基于部分卷积设计小目标检测头以处理小目标像素级特征信息。对比实验结果表明,相较于原模型,上述改进后,模型在性能上均有明显提升,并在检测精度上显著优于其他改进方式。消融实验结果表明,YOLOv8-EA在障碍检测精度方面取得显著提升,在KITTI数据集下,mAP50和mAP50-95分别提升了2.4%和4.7%;采用SODA10M数据集进行二次验证,mAP50和mAP50-95分别提升了1.4%和1.1%,证明YOLOv8-EA算法具有很好的泛化能力。所提算法在处理遮挡目标及小目标时,展现了出色的性能,为无人驾驶系统中的后续决策任务提供了更加可靠的支持。 展开更多
关键词 目标检测 无人驾驶 复杂道路场景 部分卷积 大内核深度卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部