期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于反向鲸鱼-多隐层极限学习机的电网FDIA检测 被引量:4
1
作者 席磊 王艺晓 +2 位作者 何苗 程琛 田习龙 《中国电力》 CSCD 北大核心 2024年第9期20-31,共12页
针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为... 针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为多隐层神经网络,解决其特征表达能力有限的问题,而且引入鲸鱼优化算法对多隐层极限学习机的各隐层神经元个数进行寻优并采用反向学习策略提高其收敛速度和检测精度,以防止随机确定各隐层神经元个数对检测方法的泛化性能和定位检测结果造成影响。通过在不同场景下对IEEE-14和57节点测试系统进行大量实验,验证了所提方法能够通过历史数据自动识别受攻击的系统状态量所对应的精确位置。与其他多种方法相比,所提方法具有更优的精度、召回率和F1值。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 多隐层极限学习机 鲸鱼优化 反向学习
在线阅读 下载PDF
基于多隐层极限学习机的文本分类方法 被引量:4
2
作者 冀俊忠 庞皓明 +1 位作者 杨翠翠 刘金铎 《北京工业大学学报》 CAS CSCD 北大核心 2019年第6期534-545,共12页
针对正则化极限学习机处理高维文本数据时文本特征表示能力不足的问题,提出了一种基于多隐层极限学习机的文本分类方法.首先,使用极限学习机自编码器的压缩表示对高维文本数据进行降维处理.然后,通过多隐层极限学习机的多隐层结构提取... 针对正则化极限学习机处理高维文本数据时文本特征表示能力不足的问题,提出了一种基于多隐层极限学习机的文本分类方法.首先,使用极限学习机自编码器的压缩表示对高维文本数据进行降维处理.然后,通过多隐层极限学习机的多隐层结构提取出高层文本特征并通过最小二乘的方法对文本数据进行分类.与多个算法的实验对比表明,该算法在20newsgroup、Reuters和复旦大学中文语料库这3个数据集上都具有良好的分类性能. 展开更多
关键词 文本分类 高维文本 多隐层极限学习机 极限学习自编码器 特征映射 神经网络
在线阅读 下载PDF
基于改进多隐层极限学习机的电网虚假数据注入攻击检测 被引量:19
3
作者 席磊 何苗 +1 位作者 周博奇 李彦营 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期881-890,共10页
虚假数据注入攻击(False data injection attacks,FDIA)严重威胁了电力信息物理系统(Cyber-physical system,CPS)的状态估计,而目前大多数检测方法侧重于攻击存在性检测,无法获取准确的受攻击位置.故本文提出了一种基于灰狼优化(Gray wo... 虚假数据注入攻击(False data injection attacks,FDIA)严重威胁了电力信息物理系统(Cyber-physical system,CPS)的状态估计,而目前大多数检测方法侧重于攻击存在性检测,无法获取准确的受攻击位置.故本文提出了一种基于灰狼优化(Gray wolf optimization,GWO)多隐层极限学习机(Multi layer extreme learning machine,ML-ELM)的电力信息物理系统虚假数据注入攻击检测方法.所提方法将攻击检测看作是一个多标签二分类问题,不仅将用于特征提取与分类训练的极限学习机由单隐层变为多隐层,以解决极限学习机特征表达能力有限的问题,且融入了具有强全局搜索能力的灰狼优化算法以提高多隐层极限学习机分类精度和泛化性能.进而自动识别系统各个节点状态量的异常,获取受攻击的精确位置.通过在不同场景下对IEEE-14和57节点测试系统上进行大量实验,验证了所提方法的有效性,且分别与极限学习机、未融入灰狼优化的多隐层极限学习机以及支持向量机(Support vector machine,SVM)相比,所提方法具有更精确的定位检测性能. 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 状态估计 灰狼优化 多隐层极限学习机
在线阅读 下载PDF
基于多维特征分析的双层协同太阳辐照度预测 被引量:6
4
作者 张鸿皓 杨国华 +3 位作者 郑豪丰 柳勇 杨倩 贾睿 《太阳能学报》 EI CAS CSCD 北大核心 2022年第8期143-149,共7页
为增强逐日太阳辐照度预测的准确性和普适性,提出一种基于多维特征分析的双层协同预测模型。首先,搭建一种双层协同架构,将整个模型分成基准层和提升层两部分,使用分层预测的方式追踪目标对象的多维特征和变化趋势;其次,以数值天气预报(... 为增强逐日太阳辐照度预测的准确性和普适性,提出一种基于多维特征分析的双层协同预测模型。首先,搭建一种双层协同架构,将整个模型分成基准层和提升层两部分,使用分层预测的方式追踪目标对象的多维特征和变化趋势;其次,以数值天气预报(NWP)为输入,采用LightGBM基于特征学习预测方法构建基准预测模型;然后,在前者的基础上,挖掘目标时刻太阳辐照度与历史时序数据之间的关联性,引入改进AdaBoost算法与多隐层极限学习机(MH-ELM)作为提升层主体,提高时序预测的稳定性;最后,选用中国中部地区某光伏电站实测太阳辐照度数据进行算例分析,验证了该模型的合理性和有效性。 展开更多
关键词 太阳辐照度 预测 ADABOOST算法 协同架构 LightGBM 多隐层极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部