期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多阶段特征优选的高速铁路列车晚点预测模型
被引量:
1
1
作者
李建民
许心越
丁忻
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023年第4期219-229,共11页
为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型)。首先,利用MS特征优选方法,基于列车运行实绩提...
为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型)。首先,利用MS特征优选方法,基于列车运行实绩提取影响列车晚点的相关特征,构建初始特征集,并对其进行数据清洗和特征优选,生成最优特征子集;其次,将列车晚点特征映射为IDNN模型的神经元,采取全连接方式提取特征间的交互关系,并叠加多个浅层神经网络以克服深度神经网络反向传播过程中梯度消失的缺陷,实现列车到达晚点的精准预测;最后,以武广高速铁路列车运行实绩为例,验证MS-IDNN模型的有效性。结果表明:相比初始特征集,构建得到的最优特征子集特征维度降低了54.29%;相比6种基线模型,MS-IDNN模型的平均绝对误差和均方根误差分别至少降低4.85%和8.97%,在沿线至少66.66%的车站中表现出更高的预测性能;MS-IDNN模型能够有效剔除数据集中的不相关和冗余信息,提升列车晚点预测精度。
展开更多
关键词
高速铁路
晚点预测
多阶段特征优选
深度神经网络
反向传播
在线阅读
下载PDF
职称材料
题名
基于多阶段特征优选的高速铁路列车晚点预测模型
被引量:
1
1
作者
李建民
许心越
丁忻
机构
北京交通大学轨道交通控制与安全国家重点实验室
北京交通大学交通运输学院
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023年第4期219-229,共11页
基金
中央高校基本科研业务费专项资金资助项目(2020YJS208)
国家重点研发计划项目(2018YFB1201403)
教育部人文社科基金资助项目(18YJCZH176)。
文摘
为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型)。首先,利用MS特征优选方法,基于列车运行实绩提取影响列车晚点的相关特征,构建初始特征集,并对其进行数据清洗和特征优选,生成最优特征子集;其次,将列车晚点特征映射为IDNN模型的神经元,采取全连接方式提取特征间的交互关系,并叠加多个浅层神经网络以克服深度神经网络反向传播过程中梯度消失的缺陷,实现列车到达晚点的精准预测;最后,以武广高速铁路列车运行实绩为例,验证MS-IDNN模型的有效性。结果表明:相比初始特征集,构建得到的最优特征子集特征维度降低了54.29%;相比6种基线模型,MS-IDNN模型的平均绝对误差和均方根误差分别至少降低4.85%和8.97%,在沿线至少66.66%的车站中表现出更高的预测性能;MS-IDNN模型能够有效剔除数据集中的不相关和冗余信息,提升列车晚点预测精度。
关键词
高速铁路
晚点预测
多阶段特征优选
深度神经网络
反向传播
Keywords
High-speed railway
Delay prediction
Multi-stage feature optimization
Deep neural network
Back propagation
分类号
U292.4 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多阶段特征优选的高速铁路列车晚点预测模型
李建民
许心越
丁忻
《中国铁道科学》
EI
CAS
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部