期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合多阶段特征的中文命名实体识别模型
1
作者 杨先凤 范玥 +1 位作者 李自强 汤依磊 《计算机工程与设计》 北大核心 2025年第1期37-43,共7页
针对中文命名实体识别中未充分利用完整的文本表示和语句特征的问题,提出一种融合多阶段特征的中文命名实体识别模型(LM-CNER)。采用全局注意力机制文本融合字符级嵌入与其预训练词向量,同时获取字符级特征和单词级特征。采用翻转长短... 针对中文命名实体识别中未充分利用完整的文本表示和语句特征的问题,提出一种融合多阶段特征的中文命名实体识别模型(LM-CNER)。采用全局注意力机制文本融合字符级嵌入与其预训练词向量,同时获取字符级特征和单词级特征。采用翻转长短时记忆网络(Re-LSTM)进行上下文特征提取,采用多头自注意力机制进行句法分析,并将二者进行拼接。使用条件随机场作为解码器,得到命名实体识别结果。在微博和简历两个数据集上的实验结果表明,该模型能够获取更加准确的文本表示和语句特征,提升模型的实体识别效果。 展开更多
关键词 命名实体识别 翻转长短时记忆网络 注意力机制 编码器 预训练词向量 多阶段特征 条件随机场
在线阅读 下载PDF
面向遥感图像的多阶段特征融合目标检测方法 被引量:4
2
作者 陈立 张帆 +1 位作者 郭威 黄赟 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3520-3528,共9页
遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Fea... 遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性. 展开更多
关键词 遥感图像 目标检测 多阶段特征融合 通道拼接 非对称卷积
在线阅读 下载PDF
基于多阶段特征优选的高速铁路列车晚点预测模型 被引量:1
3
作者 李建民 许心越 丁忻 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第4期219-229,共11页
为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型)。首先,利用MS特征优选方法,基于列车运行实绩提... 为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型)。首先,利用MS特征优选方法,基于列车运行实绩提取影响列车晚点的相关特征,构建初始特征集,并对其进行数据清洗和特征优选,生成最优特征子集;其次,将列车晚点特征映射为IDNN模型的神经元,采取全连接方式提取特征间的交互关系,并叠加多个浅层神经网络以克服深度神经网络反向传播过程中梯度消失的缺陷,实现列车到达晚点的精准预测;最后,以武广高速铁路列车运行实绩为例,验证MS-IDNN模型的有效性。结果表明:相比初始特征集,构建得到的最优特征子集特征维度降低了54.29%;相比6种基线模型,MS-IDNN模型的平均绝对误差和均方根误差分别至少降低4.85%和8.97%,在沿线至少66.66%的车站中表现出更高的预测性能;MS-IDNN模型能够有效剔除数据集中的不相关和冗余信息,提升列车晚点预测精度。 展开更多
关键词 高速铁路 晚点预测 多阶段特征优选 深度神经网络 反向传播
在线阅读 下载PDF
基于样本特征强化的APT攻击多阶段检测方法 被引量:9
4
作者 谢丽霞 李雪鸥 +2 位作者 杨宏宇 张良 成翔 《通信学报》 EI CSCD 北大核心 2022年第12期66-76,共11页
针对高级持续性威胁(APT)攻击检测方法普遍缺乏对APT攻击多阶段流量特征多样性的感知,对持续时间较长的APT攻击序列检测效果不佳且难以检测处于不同攻击阶段的多类潜在APT攻击等不足,提出一种基于样本特征强化的APT攻击多阶段检测方法... 针对高级持续性威胁(APT)攻击检测方法普遍缺乏对APT攻击多阶段流量特征多样性的感知,对持续时间较长的APT攻击序列检测效果不佳且难以检测处于不同攻击阶段的多类潜在APT攻击等不足,提出一种基于样本特征强化的APT攻击多阶段检测方法。首先,根据APT攻击特点,将恶意流量划分至不同攻击阶段并构建APT攻击标识序列。其次,通过序列生成对抗网络模拟生成APT攻击多个阶段的标识序列,增加不同阶段序列样本数量实现样本特征强化并提高多阶段样本特征的多样性。最后,提出一种多阶段检测网络模型,基于多阶段感知注意力机制对提取的多阶段流量特征与标识序列进行注意力计算,得到阶段特征向量,并作为辅助信息与标识序列进行拼接操作,增强检测模型对不同阶段感知能力并提高检测精度。实验结果表明,所提方法在2个基准数据集上均有良好的检测效果,对多类潜在APT攻击的检测效果优于其他模型。 展开更多
关键词 APT攻击检测 多阶段流量特征 样本特征强化 多阶段感知注意力
在线阅读 下载PDF
基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究 被引量:6
5
作者 古文君 田有文 +4 位作者 张芳 赖兴涛 何宽 姚萍 刘博林 《沈阳农业大学学报》 CAS CSCD 北大核心 2017年第5期584-590,共7页
为了实现蓝莓内部品质快速、准确检测,采用高光谱成像技术对蓝莓的糖度和硬度多指标同时进行检测研究。提出多阶段特征波长选择方法,即采用连续投影法(SPA)和逐步多元线性回归(SMLR)等特征波长选择方法同时将糖度和硬度的特征波长选择... 为了实现蓝莓内部品质快速、准确检测,采用高光谱成像技术对蓝莓的糖度和硬度多指标同时进行检测研究。提出多阶段特征波长选择方法,即采用连续投影法(SPA)和逐步多元线性回归(SMLR)等特征波长选择方法同时将糖度和硬度的特征波长选择出来。通过高光谱成像系统(400~1000nm)采集了200幅蓝莓图像,首先对高光谱图像进行多元散射校正、标准正态变量变换和Savitzky-Golay平滑等光谱预处理,选取最优的预处理方法。然后利用SPA或者SMLR选择出糖度的几个特征波长,在此基础上再利用SPA或者SMLR选择出硬度的几个特征波长,从而形成四个特征波长选择方法 (SPA-SPA、SMLR-SMLR、SPA-SMLR和SMLR-SPA),采用4种多阶段特征波长选择方法提取同时反映蓝莓糖度和硬度的特征波长的组合。最后以全波长光谱信息(FS)和4种多阶段特征波长选择方法得出的光谱信息作为BP神经网络模型的输入矢量,建立了蓝莓糖度和硬度的预测模型。结果表明:Savitzky-Golay平滑为最优的预处理方法 ,结合BP神经网络,采用SPA-SPA多阶段特征波长选择方法所得的预测性能最优,糖度校正集的相关系数(Rc)和校正均方根误差(RMSEC)分别达到0.959和0.318°Brix,硬度校正集的相关系数(Rc)和校正均方根误差(RMSEC)分别达到0.956和0.153°Brix。糖度预测集的相关系数(Rp)和预测均方根误差(RMSEP)分别达到0.952和0.391°Brix,硬度预测集的相关系数(Rp)和预测均方根误差(RMSEP)分别达到0.953和0.234°Brix。该研究表明,应用高光谱成像技术可以对蓝莓糖度和硬度多指标同时进行检测研究,所获得的特征波长可为开发多光谱成像的蓝莓品质检测和分级系统提供参考。 展开更多
关键词 多阶段特征波长选择方法 高光谱成像技术 蓝莓 糖度 硬度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部