针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance...针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。展开更多
土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator w...土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator with Deep Learning,PEDL)对土壤参数进行反演估计,通过两个理想算例验证PEDL估计土壤参数的效果,并与集合平滑多数据同化方法(Ensemble Smoother with Multiple Data Assimilation,ESMDA)进行了系统比较。研究结果表明:PEDL能成功识别观测数据与待估参数之间的非线性关系,无需迭代即可逼近土壤参数的真实值;PEDL获得的参数后验分布范围相较于ESMDA明显缩小;与迭代5次的ESMDA方法相比,PEDL估计结果不确定性更低,且总调用次数更少。该研究有助于提高土壤参数估计的精度,可有效提升土壤状态及相关农业模型预测可靠性。展开更多
基坑开挖工程中,最大地表沉降和最大墙体侧移是非常重要的两个变形量。然而由于土体存在变异性,基坑开挖变形难以准确预测。提出一种基于KJHH模型的基坑开挖概率反分析方法,可以同时预测最大地表沉降和最大墙体侧移。在贝叶斯更新框架下...基坑开挖工程中,最大地表沉降和最大墙体侧移是非常重要的两个变形量。然而由于土体存在变异性,基坑开挖变形难以准确预测。提出一种基于KJHH模型的基坑开挖概率反分析方法,可以同时预测最大地表沉降和最大墙体侧移。在贝叶斯更新框架下,动态融合各开挖阶段观测数据,利用多重数据同化集合平滑器(Ensemble smoother with multiple data assimilation, ES-MDA)更新土体参数,提高变形预测准确性。以台北TNEC基坑工程为例,验证了所提方法的有效性。实验结果表明:随着融合更多不同开挖阶段的观测数据,预测均值和实测值趋于一致;对于TNEC工程,假设先验分布服从对数正态分布得到的开挖变形预测结果略大于采用均匀分布时的预测结果;变形预测的准确性随着迭代次数和样本量的增加而提高。展开更多
文摘针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。
文摘土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator with Deep Learning,PEDL)对土壤参数进行反演估计,通过两个理想算例验证PEDL估计土壤参数的效果,并与集合平滑多数据同化方法(Ensemble Smoother with Multiple Data Assimilation,ESMDA)进行了系统比较。研究结果表明:PEDL能成功识别观测数据与待估参数之间的非线性关系,无需迭代即可逼近土壤参数的真实值;PEDL获得的参数后验分布范围相较于ESMDA明显缩小;与迭代5次的ESMDA方法相比,PEDL估计结果不确定性更低,且总调用次数更少。该研究有助于提高土壤参数估计的精度,可有效提升土壤状态及相关农业模型预测可靠性。
文摘基坑开挖工程中,最大地表沉降和最大墙体侧移是非常重要的两个变形量。然而由于土体存在变异性,基坑开挖变形难以准确预测。提出一种基于KJHH模型的基坑开挖概率反分析方法,可以同时预测最大地表沉降和最大墙体侧移。在贝叶斯更新框架下,动态融合各开挖阶段观测数据,利用多重数据同化集合平滑器(Ensemble smoother with multiple data assimilation, ES-MDA)更新土体参数,提高变形预测准确性。以台北TNEC基坑工程为例,验证了所提方法的有效性。实验结果表明:随着融合更多不同开挖阶段的观测数据,预测均值和实测值趋于一致;对于TNEC工程,假设先验分布服从对数正态分布得到的开挖变形预测结果略大于采用均匀分布时的预测结果;变形预测的准确性随着迭代次数和样本量的增加而提高。