期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度可分卷积结合多通道注意力的垃圾图像快速分类模型
被引量:
2
1
作者
王星
晏榕璟
《兰州理工大学学报》
CAS
北大核心
2023年第3期88-93,共6页
针对传统垃圾图像分类模型结构复杂和实时性不强的问题,提出了一种深度可分卷积结合多通道注意力机制的垃圾图像快速分类模型.该模型首先利用深度卷积和逐点卷积的拼接模型构造深度可分卷积,通过减少卷积运算参数量降低模型训练时间开销...
针对传统垃圾图像分类模型结构复杂和实时性不强的问题,提出了一种深度可分卷积结合多通道注意力机制的垃圾图像快速分类模型.该模型首先利用深度卷积和逐点卷积的拼接模型构造深度可分卷积,通过减少卷积运算参数量降低模型训练时间开销;然后,引入多通道注意力机制,使模型对于强分类能力的特征具有更高的关注度;最后,在TrashNet、Garbage-classify和GINI等开源垃圾图像分类数据集上进行测试.实验结果表明,该模型相比当前主流垃圾图像分类模型,在保持识别精度较高的基础上,具有更小的时间开销和更广的检测范围.
展开更多
关键词
垃圾图像分类
深度卷积
逐点卷积
多通道注意力机制
在线阅读
下载PDF
职称材料
题名
深度可分卷积结合多通道注意力的垃圾图像快速分类模型
被引量:
2
1
作者
王星
晏榕璟
机构
石河子开放大学
西交利物浦大学理学院
出处
《兰州理工大学学报》
CAS
北大核心
2023年第3期88-93,共6页
基金
赛尔网络下一代互联网技术创新项目(NGII20190312,NGII20180117)的资助
文摘
针对传统垃圾图像分类模型结构复杂和实时性不强的问题,提出了一种深度可分卷积结合多通道注意力机制的垃圾图像快速分类模型.该模型首先利用深度卷积和逐点卷积的拼接模型构造深度可分卷积,通过减少卷积运算参数量降低模型训练时间开销;然后,引入多通道注意力机制,使模型对于强分类能力的特征具有更高的关注度;最后,在TrashNet、Garbage-classify和GINI等开源垃圾图像分类数据集上进行测试.实验结果表明,该模型相比当前主流垃圾图像分类模型,在保持识别精度较高的基础上,具有更小的时间开销和更广的检测范围.
关键词
垃圾图像分类
深度卷积
逐点卷积
多通道注意力机制
Keywords
garbage images classification
deep convolution
pointwise convolution
multi-channel attention
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度可分卷积结合多通道注意力的垃圾图像快速分类模型
王星
晏榕璟
《兰州理工大学学报》
CAS
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部