在细粒度图像分类中,现有的小样本学习算法未能充分结合通道和空间信息提取细粒度图像的判别性特征,导致仅依靠单一类型的特征不足以准确捕捉细粒度对象的类间差异.针对这一难题,提出了一种基于通道先验感知的多尺度细化网络,旨在有效...在细粒度图像分类中,现有的小样本学习算法未能充分结合通道和空间信息提取细粒度图像的判别性特征,导致仅依靠单一类型的特征不足以准确捕捉细粒度对象的类间差异.针对这一难题,提出了一种基于通道先验感知的多尺度细化网络,旨在有效融合通道信息和空间信息,提升小样本细粒度图像分类的性能.通道先验感知模块实现了通道维度上注意力权重的动态分配,从而高效地捕捉通道先验信息;多尺度特征聚合过程充分利用细粒度图像中丰富的上下文信息,获取丰富的空间和边界细节特征;最后,特征细化模块对上述提取的通道和空间维度信息进行优化,实现了对关键区域的动态选择和强调,进而融合形成更精细、更具代表性的混合特征表示.所提算法在以Conv-4作为骨干网络时,在Stanford Cars、Stanford Dogs和CUB-200-2011三个细粒度数据集上的实验分类性能显著提升.在5 way 1 shot分类任务中,三个数据集的准确率分别达到了79.95%、66.97%和81.91%;在5 way 5 shot分类任务中,准确率则分别为93.42%、82.48%和93.19%.展开更多
文摘在细粒度图像分类中,现有的小样本学习算法未能充分结合通道和空间信息提取细粒度图像的判别性特征,导致仅依靠单一类型的特征不足以准确捕捉细粒度对象的类间差异.针对这一难题,提出了一种基于通道先验感知的多尺度细化网络,旨在有效融合通道信息和空间信息,提升小样本细粒度图像分类的性能.通道先验感知模块实现了通道维度上注意力权重的动态分配,从而高效地捕捉通道先验信息;多尺度特征聚合过程充分利用细粒度图像中丰富的上下文信息,获取丰富的空间和边界细节特征;最后,特征细化模块对上述提取的通道和空间维度信息进行优化,实现了对关键区域的动态选择和强调,进而融合形成更精细、更具代表性的混合特征表示.所提算法在以Conv-4作为骨干网络时,在Stanford Cars、Stanford Dogs和CUB-200-2011三个细粒度数据集上的实验分类性能显著提升.在5 way 1 shot分类任务中,三个数据集的准确率分别达到了79.95%、66.97%和81.91%;在5 way 5 shot分类任务中,准确率则分别为93.42%、82.48%和93.19%.