期刊文献+
共找到475篇文章
< 1 2 24 >
每页显示 20 50 100
基于多通道交互注意力机制与边缘轮廓增强的红外无人机检测
1
作者 聂苏珍 曹杰 +1 位作者 郝群 庄须叶 《红外与毫米波学报》 北大核心 2025年第3期335-345,共11页
无人机因其小巧、轻便、灵活的特点,在农业、物流、救援、赈灾等方面有着广泛的应用。然而如果使用不当或管理不善,不仅会造成个人隐私泄露、财产损失,还可能对公共安全甚至军事安全构成威胁。因此,实时准确地对空域内的无人机进行检测... 无人机因其小巧、轻便、灵活的特点,在农业、物流、救援、赈灾等方面有着广泛的应用。然而如果使用不当或管理不善,不仅会造成个人隐私泄露、财产损失,还可能对公共安全甚至军事安全构成威胁。因此,实时准确地对空域内的无人机进行检测与预警具有重要作用。对此,提出了一种用于红外无人机检测的多通道交互注意力与边缘轮廓增强(Multi-Channel Interactive Attention mechanism and Edge Contour Enhancement,MCIAECE)方法。首先,通过构建多通道交互注意力机制模块和边缘轮廓增强模块组成的双通道对红外图像的浅层和深层特征进行提取,经过注意力机制可以增强目标特征,而边缘轮廓增强则可以获取更多细节信息。然后使用多级特征融合模块将所提取的各层特征进行融合增强,从而获得检测结果。实验结果表明,在3个数据集上用MCIAECE方法都能够达到较好的效果。其中在(NUDT-Single-frame InfraRed Small Target)NUDT-SIRST红外数据集上效果最佳,检测概率和交并比分别为98.83%和85.11%,与基线网络相比分别提高了1.95%和6.88%,与其他方法相比,在目标的边缘轮廓还原方面效果显著。 展开更多
关键词 多通道交互注意力机制 边缘轮廓增强 多级特征融合 红外无人机检测
在线阅读 下载PDF
应用归一化通道注意力机制的YOLOv7交通标志检测算法 被引量:1
2
作者 刘晶 刘俊伟 《计算机工程与应用》 北大核心 2025年第11期249-258,共10页
现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有... 现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有像素级建模能力,提高它对小目标交通标志特征的提取能力,YOLOv7-NCAM算法使用FReLU激活函数构建了DBF和CBF两种卷积层,并用它们来组建模型的Backbone模块和Neck模块;提出一种归一化通道注意力机制(normalized channel attention mechanism,NCAM)并加入Head模块中。通过与整体网络一起训练,得到归一化(batch normalization,BN)缩放因子,利用缩放因子算出各个通道的权重因子,提升网络对交通标志特征的表达能力,从而使YOLOv7-NCAM网络模型能够集中关注检测目标交通标志。通过在CCTSDB-2021交通标志检测数据集上的测试,与YOLOv7网络模型对比结果表明,YOLOv7-NCAM算法对背景复杂下小交通标志的检测各项指标均有明显提高:准确率(precision,P)达到91.5%,比原网络高出9.5个百分点;召回率(recall,R)达到85.9%,比原网络高出5.7个百分点;均值平均精度(mean average precision,mAP)达到了91.4%,比原网络高出4.7个百分点。与现有的交通标志检测算法相比,YOLOv7-NCAM算法的检测准确率也有提高,且检测速度48.3 FPS,能满足实时需求。 展开更多
关键词 YOLOv7 归一化通道注意力机制 交通标志 激活函数
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
3
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
融合多通道语义信息与注意力机制的Web服务类别标签推荐 被引量:1
4
作者 彭菲 潘国庆 +1 位作者 任志考 胡强 《计算机集成制造系统》 北大核心 2025年第6期2215-2225,共11页
服务表征向量的质量是影响Web服务类别标签推荐准确率的关键因素,针对现有方法在生成服务表征向量时普遍存在语义表达不完备和精确度不高,从而影响服务类别标签的推荐准确性的问题,提出一种融合多通道语义信息与注意力机制的Web服务类... 服务表征向量的质量是影响Web服务类别标签推荐准确率的关键因素,针对现有方法在生成服务表征向量时普遍存在语义表达不完备和精确度不高,从而影响服务类别标签的推荐准确性的问题,提出一种融合多通道语义信息与注意力机制的Web服务类别标签推荐方法。利用RoBERTa模型生成服务描述文本中特征词的嵌入表示,建立面向不同粒度特征词的语义信息提取通道;构建一种带有快速规则近似注意力机制的全局语义提取模型FRASRU,实现特征词自身语义特征与全局语义特征的快速融合;将多通道特征融合的服务表征向量输入预训练好的sigmiod分类器,实现类别标签推荐。实验表明所提方法优于同类对比模型与分类方法,具有良好的分类效果。 展开更多
关键词 标签推荐 多通道 注意力机制 WEB服务
在线阅读 下载PDF
基于细粒度注意力机制的人与物体交互检测
5
作者 丁元博 白琳 李陶深 《计算机科学》 北大核心 2025年第11期141-149,共9页
细粒度信息作为一种上下文信息,能够辅助模型识别相对空间关系相似的人与物体交互动作。然而,如何利用这一关键线索统一建模多尺度特征图上不同粒度的特征信息,仍然是人与物体交互检测精度进一步提升面临的主要挑战之一。为了解决这一问... 细粒度信息作为一种上下文信息,能够辅助模型识别相对空间关系相似的人与物体交互动作。然而,如何利用这一关键线索统一建模多尺度特征图上不同粒度的特征信息,仍然是人与物体交互检测精度进一步提升面临的主要挑战之一。为了解决这一问题,提出了一种基于细粒度注意力机制的人与物体交互检测模型(FGDHOI)。该模型在细粒度信息的指导下强化局部特征,融合不同尺度的特征图,通过可变形注意力机制自动学习图像内容,并建模不同粒度特征之间的长距离依赖关系,从本质上提高了人与物体交互检测模型的精度。在V-COCO和HICO数据集上进行了广泛的定性、定量及消融实验。实验结果表明,所提出的方法相比基准模型,在V-COCO数据集上mAP提升了7.7个百分点,在HICO数据集3项指标上mAP分别提升了7.43个百分点、7.5个百分点和7.85个百分点。 展开更多
关键词 深度学习 人与物体交互检测 细粒度信息 注意力机制
在线阅读 下载PDF
基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断
6
作者 章力 邓艾东 +2 位作者 王敏 卞文彬 张宇剑 《动力工程学报》 北大核心 2025年第4期571-581,共11页
针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特... 针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特征信息;同时,构建多尺度减法神经网络模型,关注层级差异;其次,引入轻量化模块,减少内存访问;然后,结合通道注意力机制,调整特征权重;最后,将故障样本输入到网络模型中,实现精确分类。利用风电机组传动系统模拟实验台采集的样本数据进行诊断任务。结果表明:该故障诊断模型能够有效克服传统多尺度卷积神经网络模型网络层数多、参数量大所带来的弊端,能够充分关注各层级之间的差异信息,减少冗余信息的提取,精确定位故障特征,缩短模型训练时间,在恒定工况、变工况和强噪声工况下都具有较高的诊断精度. 展开更多
关键词 滚动轴承 故障诊断 多尺度减法神经网络 轻量化模块 通道注意力机制 变工况
在线阅读 下载PDF
基于Mamba空间注意力与通道交互注意力模块的双路径脑肿瘤分割方法
7
作者 李冰 刘彦 《计算机应用研究》 北大核心 2025年第11期3482-3488,共7页
脑肿瘤病变区域的有效管理依赖于对脑肿瘤图像的精确分割。现有方法对全局空间信息建模能力有限,且未能充分捕捉不同模态特征间的内在联系。基于此,提出了一种基于Mamba空间注意力和通道交互注意力单元的双路径脑肿瘤分割方法,该方法的... 脑肿瘤病变区域的有效管理依赖于对脑肿瘤图像的精确分割。现有方法对全局空间信息建模能力有限,且未能充分捕捉不同模态特征间的内在联系。基于此,提出了一种基于Mamba空间注意力和通道交互注意力单元的双路径脑肿瘤分割方法,该方法的网络编码器由一系列空间-通道双路注意力单元组成;此单元包括三个子模块:双向Mamba空间位置信息注意力模块,旨在增强网络对长依赖的建模能力,同时保持较低的计算负担;通道交互注意力模块能够学习不同模态间的特征关系,提高对通道信息的敏感性;最后使用两级融合模块整合子模块输出。所提方法在公开数据集BraTs21上达到84.29%(Dice)、88.08%(F_(1)-score)、75.80%(MIoU),优于多种主流分割方法,验证了该方法的有效性。 展开更多
关键词 多模态MRI 脑肿瘤分割 注意力机制 Mamba 空间和通道注意力
在线阅读 下载PDF
基于分组卷积的通道重洗注意力机制 被引量:1
8
作者 张李伟 梁泉 +1 位作者 胡禹涛 朱乔乐 《计算机应用》 北大核心 2025年第4期1069-1076,共8页
注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道... 注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道重洗注意力(CSA)模块。首先,利用分组卷积学习注意力权重,以控制CSA的复杂度;其次,通过传统通道重洗和深层通道重洗(DCS)方法,增强不同组间的通道特征信息交流;再次,使用逆通道重洗恢复注意力权重的顺序;最后,将恢复后的注意力权重与原始特征图相乘,以获得更具表达能力的特征图。实验结果表明,在CIFAR-100数据集上,与添加CA(Coordinate Attention)的ResNet50相比,添加CSA的ResNet50的参数量降低了2.3%,Top-1准确率提升了0.57个百分点;与添加EMA(Efficient Multi-scale Attention)的ResNet50相比,添加CSA的ResNet50的计算量降低了18.4%,Top-1准确率提升了0.27个百分点。在COCO2017数据集上,添加CSA的YOLOv5s比添加CA和EMA的YOLOv5s在平均精度均值(mAP@50)上分别提升了0.5和0.2个百分点。可见,CSA达到了参数量和计算量的平衡,并能够同时提升图像分类任务的准确率和目标检测任务的定位能力。 展开更多
关键词 注意力机制 分组卷积 通道重洗 图像分类 目标检测
在线阅读 下载PDF
基于通道注意力机制的MIMO神经网络均衡算法
9
作者 户俊杰 延凤平 +2 位作者 郭浩 王鹏飞 骆长亮 《光通信技术》 北大核心 2025年第3期22-26,共5页
针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性... 针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性能,利用VPI Transmission仿真平台搭建了三模模分复用系统进行测试。实验结果表明:在满足误码率为1×10^(-3)的条件下,MIMO-NNE-CAM算法相较原始MIMO-NNE算法和最小均方(LMS)算法分别具有1.3dB和3.1dB的性能增益,且在强耦合情况下也能保持稳定的误码性能,展现出更快的收敛速度和更强的抗耦合能力。 展开更多
关键词 信道均衡 模分复用 神经网络 模间串扰 通道注意力机制
在线阅读 下载PDF
基于双通道注意力机制的雾天道路目标检测算法
10
作者 麦敬睿 许锋 《科学技术与工程》 北大核心 2025年第26期11276-11285,共10页
为解决雾天道路目标特征模糊、提取困难等问题,提出了一种基于双通道注意力机制的目标检测算法GMA-YOLO。通过特征融合的方式直接检测,其设计思路:首先,将局部混合特征通道注意力模块(global&local channel attention,GLCA)改进主... 为解决雾天道路目标特征模糊、提取困难等问题,提出了一种基于双通道注意力机制的目标检测算法GMA-YOLO。通过特征融合的方式直接检测,其设计思路:首先,将局部混合特征通道注意力模块(global&local channel attention,GLCA)改进主干和颈部特征融合的C2f模块,提升模糊目标的局部特征提取能力;然后,设计双路径结构的混合池化卷积(mixed pooling convolution,MPConv)改进下采样模块,提升特征保留的多样性与处理复杂场景的鲁棒性;接着,引入辅助检测头(auxiliary head,AuxHead),提升远景小目标的检测效果;最后,引入Focaler-CIoU优化损失函数,降低易分类样本的权重,强调受阻严重的样本。实验表明,在RTTS数据集上相较于YOLOv8s基线模型,GMA-YOLO模型在参数量减少的情况下,mAP@0.5提升了3.2%,达到78.6%,召回率提升了3.8%,达到71.7%,该算法有效提高雾天场景的目标检测精度。 展开更多
关键词 雾天目标检测 多尺度特征融合 混合通道注意力机制 混合池化卷积 辅助检测头
在线阅读 下载PDF
一种新型注意力机制的双人交互行为识别方法
11
作者 武东辉 刘国志 +3 位作者 管大松 赵婉婉 杨佳慧 郭明 《传感器与微系统》 北大核心 2025年第9期148-153,共6页
双人交互行为识别方法往往忽略交互无关动作的干扰,以及忽略视角变化导致空间关系失真,进而造成相似动作混淆以及模型泛化能力下降问题。针对以上问题,本文提出一种基于卷积神经网络(CNN)与长短期记忆网络(LSTM)的多特征流融合模型——C... 双人交互行为识别方法往往忽略交互无关动作的干扰,以及忽略视角变化导致空间关系失真,进而造成相似动作混淆以及模型泛化能力下降问题。针对以上问题,本文提出一种基于卷积神经网络(CNN)与长短期记忆网络(LSTM)的多特征流融合模型——CL-GLA模型。首先,提出一种全局—局部融合注意力(GLA)模块抑制交互无关肢体的特征。然后,引入二维离散小波变换(2D-DWT)在空间—频率域多尺度构建视角不变特征,减小视角变化带来的影响。最后,分层融合个体与双人交互动作特征,细粒度分析动作并捕获交互关系。通过在UT-Interaction和NTU RGB+D数据集上实验,所提方法准确率优于对比的相关方法,分别取得98.7±0.7%,97.3±0.9%,93.6±0.1%和94.6±0.1%的准确率。 展开更多
关键词 深度学习 双人交互 长短期记忆网络 注意力机制
在线阅读 下载PDF
多尺度通道注意力机制空调启停时间预测研究
12
作者 王华秋 谭佳豪 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期66-74,共9页
为了降低生产车间的空调能耗,构建了一种基于数据分解的通道注意力机制空调启停时间预测模型FDCANet。该模型将输入数据分解为周期性特征与趋势性特征。通过改进通道注意力机制对细节特征进行更深层次的学习,通过特征融合的方式融合内... 为了降低生产车间的空调能耗,构建了一种基于数据分解的通道注意力机制空调启停时间预测模型FDCANet。该模型将输入数据分解为周期性特征与趋势性特征。通过改进通道注意力机制对细节特征进行更深层次的学习,通过特征融合的方式融合内部特征得到预测结果。结果表明:该方法较多个预测模型在多个评价指标上都有更小的误差准确率,MSE、MAE和MAPE平均降低16.67%、5.29%、20.15%,展现出较好的优势,从而更好地预测车间内空调启停时间。使用预测结果后,车间的能耗明显降低,为节能优化提供了有力支撑。 展开更多
关键词 空调启停时间 数据分解 通道注意力机制 预测模型 节能优化
在线阅读 下载PDF
基于跨域交互注意力和对比学习引导的红外与可见光图像融合
13
作者 邸敬 梁婵 +1 位作者 刘冀钊 廉敬 《中国光学(中英文)》 北大核心 2025年第2期317-332,共16页
现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,导致纹理细节模糊。针对这一问题,本文提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外... 现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,导致纹理细节模糊。针对这一问题,本文提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外和可见光图像中分别提取和增强细节信息,并利用跳跃连接避免信息丢失,生成增强后的细节图像。接着,构建了联合双分支编码器和跨域交互注意力模块的图像融合网络,确保特征融合时充分进行特征交互,并通过解码器重建为最终的融合图像。然后,引入了通过对比学习块进行浅层和深层属性和内容的对比学习网络,优化特征表示,进一步提升图像融合网络的性能。最后,为了约束网络训练以保留源图像的固有特征,设计了一种基于对比约束的损失函数,以辅助融合过程对源图像信息的对比保留。将提出方法与前沿融合方法进行了定性和定量的分析比较。在TNO、MSRS、RoadSence数据集上的实验结果表明:本文方法的8项客观评价指标均较对比方法有显著提升。本文方法融合后图像具有丰富的细节纹理、显著的清晰度和对比度,有效提高了道路交通、安防监控等实际应用中的目标识别和环境感知能力。 展开更多
关键词 红外与可见光图像融合 对比学习 跨域交互注意力机制 对比约束损失
在线阅读 下载PDF
基于图时空注意力的多车交互轨迹预测模型
14
作者 张新锋 赵娟 +1 位作者 刘国华 刘鹏菲 《汽车技术》 北大核心 2025年第3期30-38,共9页
为有效提取高速交通场景下车辆间的交互特征,从而准确预测动态障碍轨迹,基于编-解码框架,提出基于图时空注意力的多车交互轨迹预测模型。结合斥力场和图模型建立车-车图交互场,利用节点和邻接特征矩阵表征车辆之间的动态交互,通过图空... 为有效提取高速交通场景下车辆间的交互特征,从而准确预测动态障碍轨迹,基于编-解码框架,提出基于图时空注意力的多车交互轨迹预测模型。结合斥力场和图模型建立车-车图交互场,利用节点和邻接特征矩阵表征车辆之间的动态交互,通过图空间注意力和时间多头注意力提取深层时空交互,获取图时空融合编码;将车辆横纵向行为意图独热编码与其拼接,实现目标车辆多模态轨迹预测。利用NGSIM数据集进行验证,相较于其他6种模型,该模型RMSE和NLL值最低;通过消融实验进一步验证图交互场的有效性,结果表明,该模型能够有效提高车辆轨迹预测精度。 展开更多
关键词 多车交互 斥力场 注意力机制 图模型 轨迹预测
在线阅读 下载PDF
基于像素差异度注意力机制的轻量化YOLOv5行人检测算法 被引量:1
15
作者 陈高宇 王晓军 李晓航 《计算机工程与应用》 北大核心 2025年第1期291-299,共9页
针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pool... 针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pooling,GAP)、全局最大值池化(global max pooling,GMP)来概括整张特征图的信息,全局池化将空间压缩成一个值来表征整个通道,造成了空间信息的流失,PDA将空间信息沿高和宽分别压缩,并将其分别与通道信息联系起来做注意力加权操作,同时提出一种新的通道描述指标表征通道信息,增强空间信息与通道信息的交互,使模型更容易关注到综合了空间和通道维度上的特征图的重要信息,在主干网络末端插入PDA后使模型平均精度(mean average precision,mAP)0.5提升了2.4个百分点,mAP0.5:0.95提升了4.4个百分点;针对实时检测场景的部署和检测速度要求模型拥有较少的参数量和计算量,因此提出了新的轻量化特征提取模块AC3代替原YOLOv5模型中的C3模块,该模块使插入PDA后的改进模型在精度仅仅损失0.2个百分点的情况下,参数量(parameters,Param.)减少了20%左右,浮点运算量(giga floating-point operations,GFLOPs)减少了30%左右。实验结果表明,最终的改进模型比YOLOv5s原模型在VOC行人数据集上mAP0.5提升了2.2个百分点,mAP0.5:0.95提升了3.1个百分点,且参数量减少了20%左右,浮点运算量减少了30%左右,在GTX1050上的检测速度(frames per second,FPS)提升了4。 展开更多
关键词 YOLOv5 行人检测 注意力机制 轻量化模型 通道描述指标
在线阅读 下载PDF
基于多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合 被引量:1
16
作者 邸敬 梁婵 +2 位作者 任莉 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第7期754-764,共11页
针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度... 针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度信息利于互补信息的融合;其次,采用密集连接块进行特征提取,减少信息损失最大限度利用信息;接着,设计了一种跨维度交互注意力机制,有助于捕捉关键信息,从而提升网络性能;最后,设计了从融合图像到源图像的分解网络使融合图像包含更多的场景细节和更丰富的纹理细节。在TNO数据集上对提出的融合框架进行了评估实验,实验结果表明本文方法所得融合图像目标区域显著,细节纹理丰富,具有更优的融合性能和更强的泛化能力,主观性能和客观评价优于其他对比方法。 展开更多
关键词 红外与可见光图像融合 多尺度对比度增强 跨模态交互注意力机制 分解网络
在线阅读 下载PDF
基于双重注意力机制的多尺度指代目标分割方法
17
作者 胡梦楠 王蓉 +1 位作者 张文靖 张琪 《计算机辅助设计与图形学学报》 北大核心 2025年第1期148-156,共9页
针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,... 针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,并使用双重注意力机制捕捉多模态特征间的依赖性,实现模态间和模态内的交互;其次,利用语言特征作为引导,从其他层次的特征中聚合与目标相关的视觉信息,进一步增强特征表示;然后利用双向ConvLSTM以自下而上和自上而下的方式逐步整合低层次的空间细节和高层次的语义信息;最后,利用不同膨胀因子的空洞卷积融合多尺度信息,增加模型对不同尺度分割目标的感知能力.此外,在UNC,UNC+,GRef和ReferIt基准数据集上进行实验,实验结果表明,文中方法在UNC,UNC+,GRef和ReferIt上的oIoU指标分别提高了1.81个百分点、1.26个百分点、0.84个百分点和0.32个百分点,广泛的消融研究也验证了所提方法中各组成部分的有效性. 展开更多
关键词 指代目标分割 跨模态交互 特征增强 注意力机制 多尺度融合
在线阅读 下载PDF
激光雷达稀疏图像的残差通道注意力机制复原重建方法研究
18
作者 严伟 杨韬 +5 位作者 吴志祥 刘岩 胡淑姬 王春勇 来建成 李振华 《电子测量与仪器学报》 CSCD 北大核心 2024年第12期35-42,共8页
稀疏采样与图像复原相结合不但可以压缩数据容量,而且还可以提高成像速度,对于发展高分辨率激光雷达成像技术具有重要意义。为了改善稀疏采样图像的复原效果,本文设计了一种新的残差通道注意力机制网络块,并将残差通道注意力机制引入到... 稀疏采样与图像复原相结合不但可以压缩数据容量,而且还可以提高成像速度,对于发展高分辨率激光雷达成像技术具有重要意义。为了改善稀疏采样图像的复原效果,本文设计了一种新的残差通道注意力机制网络块,并将残差通道注意力机制引入到基于压缩感知迭代软阈值方法的深度展开网络中,抑制图像复原重建中因缺失高频信息而导致的模糊现象,形成了一种新的激光雷达稀疏采样图像的复原重建方法。该方法结合了传统压缩感知重建方法和神经网络方法的优势,与传统压缩感知重建方法相比,具有更快的重建速度;与现有神经网络方法相比,增强了结构洞察力,改进了重建图像模糊问题。以Middlebury Stereo Data 2006为测试数据集的验证计算表明,本文提出的方法与SDA、ReconNet、TVAL3、D-AMP和IRCNN等方法相比不但具有更好的图像重建质量,而且具有较高的计算效率;当稀疏采样比率为25%时,复原后图像的峰值信噪比要比其他方法高1.6 d B以上,是一种综合性能较理想的激光雷达稀疏图像复原方法。 展开更多
关键词 激光雷达 图像复原 稀疏图像 注意力机制 残差通道
在线阅读 下载PDF
基于关联交互和双边注意力的稀疏目标检测器
19
作者 周泽政 陈东方 王晓峰 《计算机工程与设计》 北大核心 2025年第1期206-213,共8页
稀疏目标检测器Sparse R-CNN算法缺少对目标间关系的建模,导致网络对全局特征信息的利用较差,使检测效果不佳。为解决上述问题,提出关联交互模块,通过融合可学习的参数和与图像数据相关的目标间关联特征数据,增强目标之间的关联性;提出... 稀疏目标检测器Sparse R-CNN算法缺少对目标间关系的建模,导致网络对全局特征信息的利用较差,使检测效果不佳。为解决上述问题,提出关联交互模块,通过融合可学习的参数和与图像数据相关的目标间关联特征数据,增强目标之间的关联性;提出双边注意力机制,通过融合实例交互注意力信息和物体与物体间的关联注意力信息,增强对全局特征的交互。基于PASCAL VOC和MS COCO数据集的实验结果表明,该方法能够有效提升检测精度,整体性能优于原方法。 展开更多
关键词 目标检测 深度学习 稀疏网络 关联 实例交互 全局特征 注意力机制
在线阅读 下载PDF
融合ViT和通道注意力的水稻病害识别技术研究 被引量:1
20
作者 涂雪滢 张佳鹏 +1 位作者 钱程 刘世晶 《农业与技术》 2025年第7期69-74,共6页
水稻产量和质量对农业经济、粮食安全、农民收入及生态环境至关重要,而水稻病害是影响其产量和质量的关键因素之一。为提升实际种植场景下的病害识别准确率,本文提出了一种融合Vision Transformer和通道注意力机制的水稻病害识别方法。... 水稻产量和质量对农业经济、粮食安全、农民收入及生态环境至关重要,而水稻病害是影响其产量和质量的关键因素之一。为提升实际种植场景下的病害识别准确率,本文提出了一种融合Vision Transformer和通道注意力机制的水稻病害识别方法。收集田间拍摄的水稻病害图像,并通过翻转、旋转、缩放等数据增强手段丰富样本多样性。针对病斑特征在图像中尺度变化大、形态复杂、局部与全局关联困难的问题,采用Vision Transformer作为基础框架,捕捉局部特征与全局信息,并融入通道注意力机制,提升模型对重要特征的关注度。引入迁移学习策略及学习率调度器,提升在样本不足情况下的识别精度并优化模型收敛速度。实验结果表明,本文方法识别精度达96.93%,相比AlexNet、VGG16、ResNet50及原始Vision Transformer,准确率分别提高4.95%、4.62%、1.91%和1.16%,且收敛速度更快,能够满足水稻病害识别需求,为其提供有效的技术支持。 展开更多
关键词 水稻病害 图像识别 Vision Transformer 通道注意力机制
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部