针对面向高度动态移动对象集的多用户连续K近邻查询,提出了基于查询索引的多用户连续K近邻查询处理(Query Index based Multiple Continuous K-Nearest Neighbor Queries,QI-MCKNN)算法,阐述了查询索引的概念和构建方法,分析了格网大小...针对面向高度动态移动对象集的多用户连续K近邻查询,提出了基于查询索引的多用户连续K近邻查询处理(Query Index based Multiple Continuous K-Nearest Neighbor Queries,QI-MCKNN)算法,阐述了查询索引的概念和构建方法,分析了格网大小对查询性能的影响,给出了相应的查询处理算法。实验表明,算法在面对高度动态的移动对象集时,查询处理性能优于基于移动对象格网索引的SEA-CNN算法。展开更多
针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor,CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进...针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor,CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进行网络扩展之前,首先执行一个预处理过程,分析相近的其他查询的扩展树,并重用其中的有效部分,从而避免了对道路网的盲目扩展;且在节点的网络扩展中,通过应用具有相同扩展方向的其他查询的扩展结果,不仅减少了对道路网的重复扩展,还节省了计算代价。实验结果表明,所提算法同传统算法相比较,缩短了查询响应时间,提高了运行效率,并且适用于不同类型的k近邻查询。展开更多
移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询q的k近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及...移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询q的k近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及移动对象连续k近邻查询这一基础问题.已有研究工作解决连续k近邻查询问题时,大多需要通过多次迭代确定一个包含k近邻的查询范围,而每次迭代需要根据移动对象的位置计算当前查询范围内移动对象的数量,整个迭代过程的计算代价占查询代价的很大部分.为此,提出了一种基于网络索引和混合高斯函数移动对象分布密度的双重索引结构(grid GMM index,GGI),并设计了移动对象连续k近邻增量查询算法(incremental search for continuous k nearest neighbors,IS-CKNN).GGI索引结构的底层采用网格索引对海量移动对象进行维护,上层构建混合高斯模型模拟移动对象在二维空间中的分布.对于给定的k近邻查询q,IS-CKNN算法能够基于混合高斯模型直接确定一个包含q的k近邻的查询区域,减少了已有算法求解该区域的多次迭代过程;当移动对象和查询q位置发生变化时,进一步提出一种高效的增量查询策略,能够最大限度地利用已有查询结果减少当前查询的计算量.最后,在滴滴成都网约车数据集以及两个模拟数据集上进行大量实验,充分验证了算法的性能.展开更多
文摘动态路网k近邻(kNN)查询是许多基于位置的服务(LBS)中的一个重要问题。针对该问题,提出一种面向动态路网的移动对象分布式kNN查询算法DkNN(Distributed kNN)。首先,将整个路网划分为部署于集群中不同节点中的多个子图;其次,通过并行地搜索查询范围所涉及的子图得到精确的kNN结果;最后,优化查询的搜索过程,引入查询范围剪枝策略和查询终止策略。在4个道路网络数据集上与3种基线算法进行了充分对比和验证。实验结果显示,与TEN~*-Index(Tree dEcomposition based kNN~*Index)算法相比,DkNN算法的查询时间减少了56.8%,路网更新时间降低了3个数量级。DkNN算法可以快速响应动态路网中的kNN查询请求,且在处理路网更新时具有较低的更新成本。
文摘针对面向高度动态移动对象集的多用户连续K近邻查询,提出了基于查询索引的多用户连续K近邻查询处理(Query Index based Multiple Continuous K-Nearest Neighbor Queries,QI-MCKNN)算法,阐述了查询索引的概念和构建方法,分析了格网大小对查询性能的影响,给出了相应的查询处理算法。实验表明,算法在面对高度动态的移动对象集时,查询处理性能优于基于移动对象格网索引的SEA-CNN算法。
文摘针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor,CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进行网络扩展之前,首先执行一个预处理过程,分析相近的其他查询的扩展树,并重用其中的有效部分,从而避免了对道路网的盲目扩展;且在节点的网络扩展中,通过应用具有相同扩展方向的其他查询的扩展结果,不仅减少了对道路网的重复扩展,还节省了计算代价。实验结果表明,所提算法同传统算法相比较,缩短了查询响应时间,提高了运行效率,并且适用于不同类型的k近邻查询。
文摘移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询q的k近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及移动对象连续k近邻查询这一基础问题.已有研究工作解决连续k近邻查询问题时,大多需要通过多次迭代确定一个包含k近邻的查询范围,而每次迭代需要根据移动对象的位置计算当前查询范围内移动对象的数量,整个迭代过程的计算代价占查询代价的很大部分.为此,提出了一种基于网络索引和混合高斯函数移动对象分布密度的双重索引结构(grid GMM index,GGI),并设计了移动对象连续k近邻增量查询算法(incremental search for continuous k nearest neighbors,IS-CKNN).GGI索引结构的底层采用网格索引对海量移动对象进行维护,上层构建混合高斯模型模拟移动对象在二维空间中的分布.对于给定的k近邻查询q,IS-CKNN算法能够基于混合高斯模型直接确定一个包含q的k近邻的查询区域,减少了已有算法求解该区域的多次迭代过程;当移动对象和查询q位置发生变化时,进一步提出一种高效的增量查询策略,能够最大限度地利用已有查询结果减少当前查询的计算量.最后,在滴滴成都网约车数据集以及两个模拟数据集上进行大量实验,充分验证了算法的性能.