期刊文献+
共找到433篇文章
< 1 2 22 >
每页显示 20 50 100
基于协同进化粒子群优化算法的水资源配置模型及应用 被引量:2
1
作者 刘洪波 菅浩然 《人民黄河》 CAS 北大核心 2024年第11期74-79,共6页
面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛... 面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛慢等问题,提出了基于协同进化粒子群优化(CPSO)算法的多目标水资源优化配置模型。以郑州市为例,构建了以实现社会、经济和生态效益的最大化为目标,供水量、需水量、供水能力和水库库容为约束的水资源配置模型。通过输入郑州市各计算单元和用水部门的用水需求量和可用水量,该模型计算并输出郑州市9个区在2019年、2035年的缺水率。结果表明:郑州市供水的区域分布比较均衡,缺水率在可接受范围内;该模型算法进化速度较快,进化的稳定性较优,优化结果在种群中可以很好地保留且对进化方向的主导性很强,可以有效地应用于解决水资源配置问题,并提升模型计算效率,为水资源管理部门提供技术支持。 展开更多
关键词 协同进化 粒子优化算法 水资源优化配置 郑州市
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
2
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:5
3
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 智能算法 滚动时域优化 差分进化粒子混合算法
在线阅读 下载PDF
基于改进粒子群算法的悬臂式掘进机轨迹跟踪控制方法
4
作者 任玉灿 张东辉 《中国矿业》 北大核心 2025年第5期144-151,共8页
悬臂式掘进机轨迹控制可以被视为一种解空间内的独立寻优问题。但地下工作环境复杂多变,掘进机在行进过程中可能会遇到各种不确定因素,易在求解复杂优化问题时陷入局部最优解,导致最优解求解效果不佳,影响掘进机轨迹的跟踪控制效果。为... 悬臂式掘进机轨迹控制可以被视为一种解空间内的独立寻优问题。但地下工作环境复杂多变,掘进机在行进过程中可能会遇到各种不确定因素,易在求解复杂优化问题时陷入局部最优解,导致最优解求解效果不佳,影响掘进机轨迹的跟踪控制效果。为了提高轨迹跟踪控制的精确性和稳定性,确保掘进效率和作业安全,本研究提出一种基于改进粒子群算法的悬臂式掘进机轨迹跟踪控制方法。通过跟踪悬臂式掘进机的当前行进状态,得到实际位姿和期望位姿间的偏差。在此基础上,利用粒子群算法调整掘进机机身的移动速度和转向角速度,实现对掘进机行进过程中位姿偏差的补偿,通过位姿偏差补偿实现掘进机的轨迹跟踪控制。在这一过程中,为避免粒子群算法陷入局部最优解,利用小生境进化策略优化粒子的适应度,将粒子划分为不同的子群体(小生境),通过缩小搜索范围的方式使算法更快地收敛到最优解,以此来提高轨迹跟踪控制的效果。通过模拟实验验证该方法的控制效果,经实验发现:应用该方法控制后,悬臂式掘进机在不同位置的方向角值和对应的期望角度值基本一致,实际转向角速度值和期望值基本相同,悬臂式掘进机在X轴和Y轴上的移动轨迹和期望轨迹吻合,说明该方法对掘进机的方向角和转向角速度的控制效果较好,轨迹跟踪控制的性能较高。 展开更多
关键词 改进粒子算法 悬臂式掘进机 轨迹跟踪控制 小生境进化策略 位姿偏差补偿
在线阅读 下载PDF
基于竞争式协同进化的混合变量粒子群优化算法 被引量:2
5
作者 张虎 张衡 +4 位作者 黄子路 王喆 付青坡 彭瑾 王峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期844-858,共15页
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协... 现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。 展开更多
关键词 混合变量优化 协同策略 进化算法 粒子
在线阅读 下载PDF
融合差分进化和Sine混沌的改进粒子群算法 被引量:7
6
作者 马乐杰 邹德旋 +2 位作者 李灿 邵莹莹 杨志龙 《计算机工程与应用》 CSCD 北大核心 2024年第19期80-96,共17页
将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分... 将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分进化算法中的交叉操作,采用淘汰机制随机搜索策略,提高算法的全局搜索能力,提高算法收敛速度。为了验证融合差分进化和Sine混沌的改进粒子群算法(improved particle swarm optimization algorithm,IPSO)的性能,与基于压缩学习因子的粒子群算法(yield-based particle swarm optimization,YPSO)、自适应加权粒子群算法(self-adaptive particle swarm optimization,SPSO)等PSO相关算法以及蜘蛛蜂优化算法(spider wasp optimization,SWO)、能量谷算法(energy valley algorithm,EVA)等2023年最新算法相比较,验证融合差分进化和Sine混沌的改进粒子群算法(IPSO)的有效性。在不同维度下解决12个常用基准函数,对12个测试函数进行实验,并与其他的几种算法进行比较,实验结果表明,改进后的PSO算法收敛速度快,收敛精度高。 展开更多
关键词 粒子优化算法 Sine映射 差分进化算法 交叉操作 随机搜索策略
在线阅读 下载PDF
基于量子行为粒子群算法的舱室噪声监测点优化布置
7
作者 郭强 时胜国 何辉辉 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第8期1488-1496,共9页
针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,... 针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,基于量子行为粒子群算法对监测点位置进行优化,获得优化布置方案。从声腔模态采样的正交性及内外声场响应的角度与其他测点布置方案进行了性能比较。研究表明:本文方法优化得到的测点布置方案采集声腔模态信息更全面,可有效提升舱室内声场的重建精度和基于舱室内声场监测的水下辐射噪声预报精度。 展开更多
关键词 测点优化布置 舱室噪声在线监测 量子行为粒子算法 声腔模态 模态置信矩阵 水下辐射噪声预报 声场预报 声激励
在线阅读 下载PDF
基于改进Apriori算法的不良驾驶行为关联分析
8
作者 韩锐 于长海 +1 位作者 丁庆国 石朋炜 《现代电子技术》 北大核心 2025年第14期50-56,共7页
不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶... 不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶行为。基于行为数据集,提出一种改进的Apriori关联规则挖掘算法。引入粒子群优化(PSO)算法优化Apriori算法中的支持度与置信度两个重要参数,并使用哈希映射表提高Apriori算法的运行效率。实验结果表明,改进Apriori算法在两种数据集上的运行时间较传统Apriori算法分别提高8.26%、9.27%。关联结果显示,不良驾驶行为并非单独存在,其中急转弯、快速变道、急加速关联性最强,超速行为与急变速次之。该研究能够为驾驶风格量化分析提供参考,可应用于交通事故主动预警系统。 展开更多
关键词 驾驶安全 不良驾驶行为 数据挖掘 关联分析 改进Apriori算法 粒子优化算法
在线阅读 下载PDF
改进粒子群算法的紫外光协作多无人机任务分配方法
9
作者 赵太飞 刘阳 杜浩辰 《激光杂志》 CAS 北大核心 2024年第6期167-173,共7页
为了解决无人机协同作战问题,需要将多任务分配给多个无人机。利用无线紫外光实现强电磁干扰环境下无人机机间隐秘信息传输,提出一种改进粒子群算法的多无人机任务分配方法,综合考虑无人机执行任务所付出的威胁代价、航程代价以及完成... 为了解决无人机协同作战问题,需要将多任务分配给多个无人机。利用无线紫外光实现强电磁干扰环境下无人机机间隐秘信息传输,提出一种改进粒子群算法的多无人机任务分配方法,综合考虑无人机执行任务所付出的威胁代价、航程代价以及完成任务的时间差,结合压缩因子和差分进化思想解决粒子群优化算法容易陷入局部最优的问题。仿真结果表明,改进粒子群算法相较于传统粒子群算法在不同无人机和任务数量比下的任务分配平均成功率提高了约16%,算法在收敛时的迭代次数平均减少了约4.5倍,最优适应度值平均减小了近一倍,在多无人机任务分配的实际应用中有一定的意义。 展开更多
关键词 紫外光通信 任务分配 粒子算法 差分进化
在线阅读 下载PDF
基于粒子群和差分进化算法的含分布式电源配电网故障区段定位 被引量:65
10
作者 周湶 郑柏林 +3 位作者 廖瑞金 李剑 马小敏 徐智 《电力系统保护与控制》 EI CSCD 北大核心 2013年第4期33-37,共5页
配电网中引入分布式电源将导致传统的故障区段定位方法不再适用。通过构建新的开关函数,提出了基于二进制混合算法的配电网故障区段定位方法。该方法可动态适应分布式电源的投切,在进行多重故障定位时只需确定一次正方向,利用双种群进... 配电网中引入分布式电源将导致传统的故障区段定位方法不再适用。通过构建新的开关函数,提出了基于二进制混合算法的配电网故障区段定位方法。该方法可动态适应分布式电源的投切,在进行多重故障定位时只需确定一次正方向,利用双种群进化策略和信息交换机制实现了粒子群和差分进化算法的混合。算例分析结果表明该方法能够对含分布式电源的配电网中的单一和多重故障进行准确定位,并且具有一定的容错性和高效性。 展开更多
关键词 粒子 差分进化 混合算法 双种 分布式电源 多重故障定位
在线阅读 下载PDF
基于粒子群进化算法的电力系统状态估计研究 被引量:18
11
作者 闫丽梅 张士元 +2 位作者 任伟建 任爽 薛晨光 《电力系统保护与控制》 EI CSCD 北大核心 2010年第22期86-89,95,共5页
加权最小二乘法是状态估计的常用方法,但在实际应用中经常会遇到算法发散的问题。为了解决这个问题,提出将改进的粒子群进化算法应用到状态估计当中,使加权最小二乘法的收敛性得到了很好的改善。结合IEEE5节点系统,给出了粒子群进化状... 加权最小二乘法是状态估计的常用方法,但在实际应用中经常会遇到算法发散的问题。为了解决这个问题,提出将改进的粒子群进化算法应用到状态估计当中,使加权最小二乘法的收敛性得到了很好的改善。结合IEEE5节点系统,给出了粒子群进化状态估计计算的三点注意事项。经试验得出,对量测点数为16的系统而言,计算时间在50s左右,量测点数为30的系统的计算时间在3min左右,量测点数为80的系统,其计算时间在15min左右。这种算法可以应用在离线状态估计上。 展开更多
关键词 粒子进化算法 电力系统 状态估计 加权最小二乘法 收敛
在线阅读 下载PDF
基于粒子进化的多粒子群优化算法 被引量:22
12
作者 张文爱 刘丽芳 李孝荣 《计算机工程与应用》 CSCD 北大核心 2008年第7期51-53,共3页
提出了一种基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,多个粒子群彼此独立地搜索解空间,从而增强了全局搜索能力;利用重置进化粒子位置的方法使陷入局部值的粒子摆脱局部最小,从而有效地避免了"早熟"... 提出了一种基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,多个粒子群彼此独立地搜索解空间,从而增强了全局搜索能力;利用重置进化粒子位置的方法使陷入局部值的粒子摆脱局部最小,从而有效地避免了"早熟"问题,提高了算法的稳定性。对3个测试函数进行了对比实验,结果表明该算法优于标准粒子群算法。 展开更多
关键词 粒子算法 进化计算 集智能 局部版粒子算法
在线阅读 下载PDF
基于差分进化和粒子群优化算法的混合优化算法 被引量:26
13
作者 池元成 方杰 蔡国飙 《计算机工程与设计》 CSCD 北大核心 2009年第12期2963-2965,2980,共4页
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA)。该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索。在整个算... 为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA)。该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索。在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛。通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点。 展开更多
关键词 差分进化 粒子优化算法 混合算法 优化 基准测试函数
在线阅读 下载PDF
具有量子行为的粒子群优化算法的参数选择 被引量:19
14
作者 康燕 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2007年第23期40-42,共3页
Sun等人从量子力学的角度提出了具有量子行为的粒子群优化算法,它在搜索能力上优于传统的PSO算法,自适应参数的数目也比之较少。集中讨论了应用QPSO如何选择自适应参数的问题。介绍了QPSO算法,给出了随机模拟的实验结果,从而看到了参数... Sun等人从量子力学的角度提出了具有量子行为的粒子群优化算法,它在搜索能力上优于传统的PSO算法,自适应参数的数目也比之较少。集中讨论了应用QPSO如何选择自适应参数的问题。介绍了QPSO算法,给出了随机模拟的实验结果,从而看到了参数值的选择如何影响粒子在QPSO中的收敛。最后,介绍了两种自适应参数控制方法和标准测试函数的实验结果。 展开更多
关键词 优化 进化计算 粒子 量子行为
在线阅读 下载PDF
一种求解多峰函数优化问题的量子行为粒子群算法 被引量:15
15
作者 赵吉 孙俊 须文波 《计算机应用》 CSCD 北大核心 2006年第12期2956-2960,共5页
介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜... 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索,从而保证每个峰值都有同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物种形成的QPSO算法可以尽可能多地找到峰值点,峰值收敛性能优于PSO。 展开更多
关键词 量子行为粒子算法 粒子算法 物种形成策略 多峰寻优
在线阅读 下载PDF
差分进化混合粒子群算法求解项目调度问题 被引量:8
16
作者 倪霖 段超 贾春兰 《计算机应用研究》 CSCD 北大核心 2011年第4期1286-1289,共4页
针对求解资源受限项目调度问题(RCPSP),提出了基于差分进化(DE)的混合粒子群算法(PSODE)。通过在PSO种群和DE种群之间建立一种信息交流机制,使信息能够在两个种群中传递,以避免个体因错误的信息判断而陷入局部最优点。采用标准测试函数... 针对求解资源受限项目调度问题(RCPSP),提出了基于差分进化(DE)的混合粒子群算法(PSODE)。通过在PSO种群和DE种群之间建立一种信息交流机制,使信息能够在两个种群中传递,以避免个体因错误的信息判断而陷入局部最优点。采用标准测试函数和具体算例进行检验,结果表明PSODE算法可以较好地解决RCPS问题。 展开更多
关键词 差分进化混合粒子算法 粒子算法 差分进化算法 项目调度
在线阅读 下载PDF
基于差分进化粒子群算法的多目标无功优化 被引量:12
17
作者 简献忠 李莹 +2 位作者 范建鹏 柏勰文 杨延安 《控制工程》 CSCD 北大核心 2015年第1期113-117,共5页
针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非... 针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非支配解的分布,以提高对种群空间的均匀采集;采用擂台赛法则构造多目标Pareto最优解集,较大程度的提高了算法的运行效率;自适应惯性权重和加速度因子的动态变化可增强算法的全局搜索能力。将该算法在IEEE14、IEEE30节点标准测试系统上进行了无功优化仿真,结果表明,基于差分进化的改进多目标粒子群优化算法能够在保持Pareto最优解的多样性的同时具有较好的收敛性能,为多目标无功优化提供了一种新的方法。 展开更多
关键词 无功优化 多目标 差分进化 粒子优化算法 非支配排序
在线阅读 下载PDF
差分进化粒子群混合优化算法的研究与应用 被引量:15
18
作者 杨妍 陈如清 俞金寿 《计算机工程与应用》 CSCD 北大核心 2010年第25期238-241,共4页
对基本粒子群算法(PSO)和差分进化算法(DE)进行了分析,有机结合两种进化算法提出了一种新型差分进化粒子群混合优化算法,该算法将优化过程分成两阶段,两分群分别采用PSO算法和DE算法同时进行。迭代过程中引入进化速度因子并通过群体间... 对基本粒子群算法(PSO)和差分进化算法(DE)进行了分析,有机结合两种进化算法提出了一种新型差分进化粒子群混合优化算法,该算法将优化过程分成两阶段,两分群分别采用PSO算法和DE算法同时进行。迭代过程中引入进化速度因子并通过群体间的信息交流阻止算法陷入局部最优。对4个高维复杂函数寻优测试表明算法的鲁棒性、收敛速度和精度,全局搜索能力均优于常规PSO和DE。将提出的改进算法用于乙烯收率软测量建模,应用结果表明模型精度较高、泛化性能较好。 展开更多
关键词 粒子优化 差分进化 混合优化算法 软测量
在线阅读 下载PDF
基于蜜蜂进化型粒子群算法的电力系统无功优化 被引量:13
19
作者 刘伟 梁新兰 安晓龙 《电力系统保护与控制》 EI CSCD 北大核心 2010年第7期16-21,共6页
为了提高电能质量,降低网损,采用蜜蜂进化机制与粒子群算法相结合的蜜蜂进化型粒子群算法(Bee Evolution Modifying Particle Swarm Optimization,BEMPSO),对电力系统的无功优化问题进行求解。改进后的算法能够克服传统粒子群算法的收... 为了提高电能质量,降低网损,采用蜜蜂进化机制与粒子群算法相结合的蜜蜂进化型粒子群算法(Bee Evolution Modifying Particle Swarm Optimization,BEMPSO),对电力系统的无功优化问题进行求解。改进后的算法能够克服传统粒子群算法的收敛精度低,易陷入局部最优解的缺点。应用改进算法对IEEE6、30节点标准电网进行无功优化计算,并与其它优化算法相比较,结果证明BEMPSO算法具有较好的全局寻优能力,验证了该算法的正确性和有效性。 展开更多
关键词 电力系统 无功优化 粒子算法 蜜蜂进化 IEEE系统
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
20
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部