期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多语言语音数据选择的资源稀缺蒙语语音识别研究 被引量:1
1
作者 张爱英 《计算机科学》 CSCD 北大核心 2018年第9期308-313,共6页
利用多语言信息可以提高资源稀缺语言识别系统的性能。但是,在利用多语言信息提高资源稀缺目标语言识别系统的性能时,并不是所有语言的语音数据对资源稀缺目标语言语音识别系统的性能提高都有帮助。文中提出利用长短时记忆递归神经网络... 利用多语言信息可以提高资源稀缺语言识别系统的性能。但是,在利用多语言信息提高资源稀缺目标语言识别系统的性能时,并不是所有语言的语音数据对资源稀缺目标语言语音识别系统的性能提高都有帮助。文中提出利用长短时记忆递归神经网络语言辨识方法选择多语言数据以提高资源稀缺目标语言识别系统的性能;选出更加有效的多语言数据用于训练多语言深度神经网络和深度Bottleneck神经网络。通过跨语言迁移学习获得的深度神经网络和通过深度Bottleneck神经网络获得的Bottleneck特征都对提高资源稀缺目标语言语音识别系统的性能有很大的帮助。与基线系统相比,在插值的Web语言模型解码条件下,所提系统的错误率分别有10.5%和11.4%的绝对减少。 展开更多
关键词 数据选择 资源稀缺 多语言深度神经网络 深度Bottleneck神经网络
在线阅读 下载PDF
资源稀缺蒙语语音识别研究 被引量:1
2
作者 张爱英 倪崇嘉 《计算机科学》 CSCD 北大核心 2017年第10期318-322,共5页
随着语音识别技术的发展,资源稀缺语言的语音识别系统的研究吸引了更广泛的关注。以蒙语为目标识别语言,研究了在资源稀缺的情况下(如仅有10小时的带标注的语音)如何利用其他多语言信息提高识别系统的性能。借助基于多语言深度神经网络... 随着语音识别技术的发展,资源稀缺语言的语音识别系统的研究吸引了更广泛的关注。以蒙语为目标识别语言,研究了在资源稀缺的情况下(如仅有10小时的带标注的语音)如何利用其他多语言信息提高识别系统的性能。借助基于多语言深度神经网络的跨语言迁移学习和基于多语言深度Bottleneck神经网络的抽取特征可以获得更具有区分度的声学模型。通过搜索引擎以及网络爬虫的定向抓取获得大量的网页数据,有助于获得文本数据,以增强语言模型的性能。融合多个不同识别结果以进一步提高识别精度。与基线系统相比,多种系统融合的识别绝对错误率减少12%。 展开更多
关键词 资源稀缺 多语言深度神经网络 Web语言模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部