期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于门控卷积机制与层次注意力机制的多语义词向量计算方法
被引量:
4
1
作者
柳杨
吉立新
+2 位作者
黄瑞阳
朱宇航
李星
《中文信息学报》
CSCD
北大核心
2018年第7期1-10,19,共11页
现有的将词映射为单一向量的方法没有考虑词的多义性,从而会引发歧义问题;映射为多个向量或高斯分布的方法虽然考虑了词的多义性,但或多或少没能有效利用词序、句法结构和词间距离等信息对词在某一固定语境中语义表达的影响。综合考虑...
现有的将词映射为单一向量的方法没有考虑词的多义性,从而会引发歧义问题;映射为多个向量或高斯分布的方法虽然考虑了词的多义性,但或多或少没能有效利用词序、句法结构和词间距离等信息对词在某一固定语境中语义表达的影响。综合考虑以上存在的问题,该文提出了一种基于非残差块封装的门控卷积机制加以层次注意力机制的方法,分别在所选取语境窗口中词的子语义层、合成语义层获得非对称语境窗口下目标单词的合成语义向量以预测目标单词,并按此法在给定语料上学习得到多语义词向量的计算方法。小规模语料上用该方法得到的多语义词向量,在词类比任务的语义类比上相比于基线方法准确率最高可提升1.42%;在WordSim353、MC、RG、RW等计算单词相似度任务的数据集上相比于基线方法能够达到平均2.11的性能提升,最高可到5.47。在语言建模实验上,该方法的语言模型性能相比于其他预测目标单词的方法也有显著提升。
展开更多
关键词
多语义词向量
层次注意力
门控卷积
在线阅读
下载PDF
职称材料
题名
基于门控卷积机制与层次注意力机制的多语义词向量计算方法
被引量:
4
1
作者
柳杨
吉立新
黄瑞阳
朱宇航
李星
机构
国家数字交换系统工程技术研究中心
出处
《中文信息学报》
CSCD
北大核心
2018年第7期1-10,19,共11页
基金
国家自然科学基金(61601513)
文摘
现有的将词映射为单一向量的方法没有考虑词的多义性,从而会引发歧义问题;映射为多个向量或高斯分布的方法虽然考虑了词的多义性,但或多或少没能有效利用词序、句法结构和词间距离等信息对词在某一固定语境中语义表达的影响。综合考虑以上存在的问题,该文提出了一种基于非残差块封装的门控卷积机制加以层次注意力机制的方法,分别在所选取语境窗口中词的子语义层、合成语义层获得非对称语境窗口下目标单词的合成语义向量以预测目标单词,并按此法在给定语料上学习得到多语义词向量的计算方法。小规模语料上用该方法得到的多语义词向量,在词类比任务的语义类比上相比于基线方法准确率最高可提升1.42%;在WordSim353、MC、RG、RW等计算单词相似度任务的数据集上相比于基线方法能够达到平均2.11的性能提升,最高可到5.47。在语言建模实验上,该方法的语言模型性能相比于其他预测目标单词的方法也有显著提升。
关键词
多语义词向量
层次注意力
门控卷积
Keywords
Multi-sense word embedding
hierarchical attention
gated convolution
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于门控卷积机制与层次注意力机制的多语义词向量计算方法
柳杨
吉立新
黄瑞阳
朱宇航
李星
《中文信息学报》
CSCD
北大核心
2018
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部