期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于隐式视角转换的视频异常检测 被引量:4
1
作者 冷佳旭 谭明圮 +1 位作者 胡波 高新波 《计算机科学》 CSCD 北大核心 2022年第2期142-148,共7页
目前,基于深度学习的视频异常检测方法都是在单一视角下对视频片段中的异常行为或异常事物进行检测,忽视了视角信息在视频异常检测中的重要性。在单一视角下,当异常事物被遮挡或异常行为不明显时,现有算法的性能将难以得到保证。为此,... 目前,基于深度学习的视频异常检测方法都是在单一视角下对视频片段中的异常行为或异常事物进行检测,忽视了视角信息在视频异常检测中的重要性。在单一视角下,当异常事物被遮挡或异常行为不明显时,现有算法的性能将难以得到保证。为此,文中首次将视角转换的概念引入到视频异常检测中,通过级联网络结构在多视角下进行异常判断来提升模型的鲁棒性。针对受限于数据集没有多视角的监督信息,难以实现真正的显式的视角转换问题,提出了一种基于隐式视角转换的视频异常检测方法.对初步检测结果为正常的目标帧,利用其与特定帧的光流信息,通过光流映射实现目标帧到特定帧视角的隐式视角转换,并对视角转换后的目标帧进行二次异常检测。通过多个视角来判定目标帧是否异常,为视频异常检测提供了一种新的思路。实验结果表明,所提方法对异常数据的反应更灵敏,具有更鲁棒的正常数据拟合能力,在UCSD Ped2和CUHK Avenue数据集上的AUC值分别达到了97.0%和88.9%。 展开更多
关键词 视频异常检测 隐式视角转换 光流映射 多视角检测 深度学习
在线阅读 下载PDF
基于LBP和CCS-AdaBoost的多视角人脸检测 被引量:6
2
作者 何智翔 丁晓青 +1 位作者 方驰 文迪 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第4期622-629,共8页
为了解决多视角人脸检测中多视角导致的人脸结构不同的问题和人脸与非人脸之间的误分类风险不同的问题,检测特征使用局部二值模式(LBP)及统计直方图,人脸非人脸分类器使用可控风险敏感AdaBoost(CCS-Ada-Boost).LBP及统计直方图能够描述... 为了解决多视角人脸检测中多视角导致的人脸结构不同的问题和人脸与非人脸之间的误分类风险不同的问题,检测特征使用局部二值模式(LBP)及统计直方图,人脸非人脸分类器使用可控风险敏感AdaBoost(CCS-Ada-Boost).LBP及统计直方图能够描述多视角的人脸结构;CCS-AdaBoost能够在降低总体的误分类风险的同时最小化分类错误率.实验中,LBP特征的性能在正面人脸检测上比Haar-like特征更好.CCS-AdaBoost分类器在一定条件下也比普通AdaBoost分类器有更好的性能,并且弥补了风险敏感AdaBoost分类器(CS-AdaBoost)对靠近分类边界的样本分类不好的缺陷.最终的多视角人脸检测器在CMU-Profile测试集上获得了满意的结果.该算法实现了鲁棒的多视角人脸检测方法,在相同虚警率下获得比其他人脸检测方法更好的结果,能够有效地解决多视角人脸检测中的2个问题. 展开更多
关键词 多视角人脸检测 可控风险敏感AdaBoost 局部二值模式(LBP) 宽度优先搜索 决策树
在线阅读 下载PDF
基于多通道图判别投影HAAR特征的多视角人脸检测 被引量:5
3
作者 沈继锋 时士伟 +1 位作者 左欣 徐丹 《数据采集与处理》 CSCD 北大核心 2018年第2期270-279,共10页
提出了一种基于多通道图判别投影HAAR特征的多视角人脸检测算法。该算法首先将人脸图像提取多通道图,降低图像中的光照和噪声影响;其次基于正负训练样本集利用线性判别投影学习增强HAAR特征,提高特征判别能力;然后计算训练样本的增强HAA... 提出了一种基于多通道图判别投影HAAR特征的多视角人脸检测算法。该算法首先将人脸图像提取多通道图,降低图像中的光照和噪声影响;其次基于正负训练样本集利用线性判别投影学习增强HAAR特征,提高特征判别能力;然后计算训练样本的增强HAAR特征在多通道图中的响应,并利用非对称GentleBoost算法进行特征选择生成一组弱分类器;最后利用线性非对称分类器重新调整强分类器的权重和阈值。该方法不仅提高了特征的判别能力,而且实现了非平衡正负样本空间的合理划分。实验结果表明:该方法与当前经典方法相比具有更快的检测速度和更高的检测精度。 展开更多
关键词 多视角人脸检测 多通道图 Fisher判别投影 非对称线性分类器
在线阅读 下载PDF
视频中的多视角人脸检测与姿态判别 被引量:4
4
作者 宋红 石峰 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第1期90-95,共6页
提出了一种基于多种信息融合的多视角人脸检测方法.对视频图像通过对称差分算法检测运动区域,利用神经网络肤色模型对运动区域进行肤色识别,将多视角多人脸检测简化在候选区域内;最后通过集成多神经网络,其中每个神经网络负责一定视角... 提出了一种基于多种信息融合的多视角人脸检测方法.对视频图像通过对称差分算法检测运动区域,利用神经网络肤色模型对运动区域进行肤色识别,将多视角多人脸检测简化在候选区域内;最后通过集成多神经网络,其中每个神经网络负责一定视角的图像,实现了人脸验证,同时可以粗略地判定人脸姿态.实验结果表明该算法可适应不同的光照环境,检测不同大小,不同视角的人脸. 展开更多
关键词 多视角人脸检测 BP神经网络 姿态判别
在线阅读 下载PDF
基于加权霍夫投票的多视角车辆检测方法
5
作者 李冬梅 李涛 向涛 《现代电子技术》 北大核心 2018年第15期73-78,共6页
针对复杂场景中车辆由于视角变化引起的检测精确度过低的问题,改进霍夫投票目标检测模型,提出一种在统一框架下通过不同权重组合发现目标最优视角并进行精确定位的方法。首先,利用一种无监督方法实现多视角车辆的子视角划分;其次,利用... 针对复杂场景中车辆由于视角变化引起的检测精确度过低的问题,改进霍夫投票目标检测模型,提出一种在统一框架下通过不同权重组合发现目标最优视角并进行精确定位的方法。首先,利用一种无监督方法实现多视角车辆的子视角划分;其次,利用子视角划分结果定义霍夫投票过程中各正例样本在不同视角下的投票权重;最后,利用子视角划分和投票权重,提出一种新的适用于多视角目标检测的加权霍夫投票模型。在MITStreet Scene Cars和PASCAL VOC2007 Cars两个常用数据集上的实验结果表明,所提方法在不增加模型复杂度的前提下,有效提升了多视角目标检测精确度。 展开更多
关键词 复杂场景 霍夫投票 最优视角 多视角目标检测 子类划分 局部线性嵌入(LLE)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部