期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于中心锚困难三元组损失和多视图特征融合的三维模型分类
1
作者
高雪瑶
张澐凯
张春祥
《电子与信息学报》
北大核心
2025年第6期1937-1949,共13页
多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入...
多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入,利用深度残差收缩网络(DRSN)提取视图特征并融合2维形状分布特征D1,D2和D3得到视图融合特征;其次,根据3维模型视图融合特征,通过香农熵来衡量视图分类的不确定性,并将3维模型的多视图按视图显著性由高到低排序;然后,搭建基于注意力-长短期记忆网络(Att-LSTM)的3元组多视图特征融合网络,利用LSTM学习多视图之间的上下文信息,并融入多头注意力机制充分捕捉多视图间的相关信息;最后,引入度量学习并提出了一种新颖的中心锚困难3元组损失(CAH Triplet Loss),并联合交叉熵损失(CE Loss)来优化多视图特征融合网络,减小同类样本、增大异类样本在特征空间上的距离,加强网络对3维模型区分性特征的学习。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到93.83%,分类性能突出。
展开更多
关键词
3维模型分类
多视图特征融合
注意力机制
3元组损失
在线阅读
下载PDF
职称材料
基于全域跨语义融合的多级酶功能预测
2
作者
周汉文
邓赵红
张炜
《计算机科学与探索》
北大核心
2025年第6期1588-1597,共10页
蛋白质在生物活动中发挥着关键作用,酶作为一种重要的蛋白质,因其催化功能在多个领域得到广泛应用。然而,通过生化实验验证酶的功能既费时又昂贵。传统的酶功能注释方法主要依赖于序列相似性,但在目标酶序列与已知酶差异较大时,这些方...
蛋白质在生物活动中发挥着关键作用,酶作为一种重要的蛋白质,因其催化功能在多个领域得到广泛应用。然而,通过生化实验验证酶的功能既费时又昂贵。传统的酶功能注释方法主要依赖于序列相似性,但在目标酶序列与已知酶差异较大时,这些方法效果不佳。近年来,科研人员初步探索了一些基于深度学习的方法,但现有的深度学习方法受限于传统酶序列编码方式,并且仅利用单一视图或单层次的信息,这使得模型在处理结构复杂或功能多样的酶时表现出一定的局限性。对此,提出一种新的全域跨语义融合的多级酶功能预测方法(GCMEFP)。所提方法使用了两种最新的蛋白质大语言模型进行序列词嵌入学习。构建了多语义深度特征学习模块,该模块通过卷积神经网络构建语义金字塔,实现了不同层级语义信息的提取。还提出了全域跨视图语义融合模块,用于探索不同视图之间隐藏的相互作用信息,并去除冗余信息来增强模型的泛化性。实验结果表明:提出的GCMEFP在基准数据集上的精度达到89.6%,较现有最优方法高出0.048;在独立测试集New-379上的精度达到55.6%,较现有最优方法高出0.14。
展开更多
关键词
多级酶功能预测
多语义深度
特征
学习
大模型词嵌入
多视图特征融合
在线阅读
下载PDF
职称材料
题名
基于中心锚困难三元组损失和多视图特征融合的三维模型分类
1
作者
高雪瑶
张澐凯
张春祥
机构
哈尔滨理工大学计算机科学与技术学院
出处
《电子与信息学报》
北大核心
2025年第6期1937-1949,共13页
基金
国家自然科学基金(61502124,60903082)
中国博士后科学基金(2014M560249)
黑龙江省自然科学基金(LH2022F031,LH2022F030,F2015041,F201420)。
文摘
多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入,利用深度残差收缩网络(DRSN)提取视图特征并融合2维形状分布特征D1,D2和D3得到视图融合特征;其次,根据3维模型视图融合特征,通过香农熵来衡量视图分类的不确定性,并将3维模型的多视图按视图显著性由高到低排序;然后,搭建基于注意力-长短期记忆网络(Att-LSTM)的3元组多视图特征融合网络,利用LSTM学习多视图之间的上下文信息,并融入多头注意力机制充分捕捉多视图间的相关信息;最后,引入度量学习并提出了一种新颖的中心锚困难3元组损失(CAH Triplet Loss),并联合交叉熵损失(CE Loss)来优化多视图特征融合网络,减小同类样本、增大异类样本在特征空间上的距离,加强网络对3维模型区分性特征的学习。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到93.83%,分类性能突出。
关键词
3维模型分类
多视图特征融合
注意力机制
3元组损失
Keywords
3D model classification
Multi-view feature fusion
Attention mechanism
Triplet loss
分类号
TN919.8 [电子电信—通信与信息系统]
TP391.7 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于全域跨语义融合的多级酶功能预测
2
作者
周汉文
邓赵红
张炜
机构
江南大学人工智能与计算机学院
出处
《计算机科学与探索》
北大核心
2025年第6期1588-1597,共10页
基金
国家自然科学基金(62176105)。
文摘
蛋白质在生物活动中发挥着关键作用,酶作为一种重要的蛋白质,因其催化功能在多个领域得到广泛应用。然而,通过生化实验验证酶的功能既费时又昂贵。传统的酶功能注释方法主要依赖于序列相似性,但在目标酶序列与已知酶差异较大时,这些方法效果不佳。近年来,科研人员初步探索了一些基于深度学习的方法,但现有的深度学习方法受限于传统酶序列编码方式,并且仅利用单一视图或单层次的信息,这使得模型在处理结构复杂或功能多样的酶时表现出一定的局限性。对此,提出一种新的全域跨语义融合的多级酶功能预测方法(GCMEFP)。所提方法使用了两种最新的蛋白质大语言模型进行序列词嵌入学习。构建了多语义深度特征学习模块,该模块通过卷积神经网络构建语义金字塔,实现了不同层级语义信息的提取。还提出了全域跨视图语义融合模块,用于探索不同视图之间隐藏的相互作用信息,并去除冗余信息来增强模型的泛化性。实验结果表明:提出的GCMEFP在基准数据集上的精度达到89.6%,较现有最优方法高出0.048;在独立测试集New-379上的精度达到55.6%,较现有最优方法高出0.14。
关键词
多级酶功能预测
多语义深度
特征
学习
大模型词嵌入
多视图特征融合
Keywords
multi-level enzyme function prediction
multi-semantic deep feature learning
large language model word embedding
multi-view feature aggregation
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于中心锚困难三元组损失和多视图特征融合的三维模型分类
高雪瑶
张澐凯
张春祥
《电子与信息学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于全域跨语义融合的多级酶功能预测
周汉文
邓赵红
张炜
《计算机科学与探索》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部