期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法 被引量:10
1
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
在线阅读 下载PDF
基于多尺度自适应时空图卷积网络与BERT模型的多节点短期负荷预测
2
作者 吴兴扬 戴剑丰 《电网技术》 2025年第9期3756-3766,I0072-I0075,共15页
“双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出... “双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出了一种基于多尺度自适应时空图卷积网络(adaptive spatio-temporal graph convolutional network,ASTGCN)与基于Transformer的双边编码器表示(bidirectional encoder representations from transformers,BERT)模型的多节点短期负荷预测方法。首先,采用Prophet算法对负荷数据进行拟合分解,获取不同尺度下的负荷数据分量,并与强相关的天气数据共同构建多元数据集;其次,引入可膨胀的滑动时空窗口和时空图卷积算子构建ASTGCN,同时捕捉空间和时间上的复杂依赖关系,并引入BERT模型对时间序列数据进行编码,利用其强大的处理能力来捕捉负荷数据中的长期依赖性;最后,用门控融合网络对两个模型进行融合。基于美国纽约州的公开数据集进行测试,单日和单周的测试结果均表明所提模型不仅能有效挖掘节点的耦合特性,还能补充挖掘中长期时序特征,并显著提升预测精度,降低预测误差。 展开更多
关键词 Prophet算法 自适应时空图卷积网络 BERT 门控融合网络 多节点负荷预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部