Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing...Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.展开更多
The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the m...The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source.Cross vehicle weight,truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption.In this paper,an artificial neural network model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight,truck velocity and total resistance.The network was trained and tested using real data collected from a surface mining operation.The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage parameters considered in this study.展开更多
Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model ...Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.展开更多
文摘Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.
基金CRC Mining and The University of Queensland for their financial support for this study
文摘The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source.Cross vehicle weight,truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption.In this paper,an artificial neural network model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight,truck velocity and total resistance.The network was trained and tested using real data collected from a surface mining operation.The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage parameters considered in this study.
基金supported by the Application Research of the Remote Sensing Technology on Global Energy Internet(JYYKJXM(2017)011)the National Natural Science Foundation of China(61671332,41701518,41771452,41771454,U1736206)+4 种基金National key R&D Project(2016YFE0202300)Hubei Province Technological Innovation Major Project(2017AAA123)Applied Basic Research Program of Wuhan City(2016010101010025)Basic Research Program of Shenzhen(JCYJ20170306171431656)the Fundamental Research Funds for the Central Universities(2042016gf0033)
文摘Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.