期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
并行池化注意力及多特征融合增强目标检测方法 被引量:1
1
作者 程杰 卞长智 +2 位作者 张婧 李小霞 丁楠 《现代电子技术》 北大核心 2025年第5期59-67,共9页
针对通道注意力降维时导致细节信息损失和特征融合不充分的问题,提出一种并行池化注意力及多特征融合增强方法。首先,对输入图像使用两种池化模块并行处理,实现特征注意力增强。其中:熵引导池化模块利用通道信息熵生成特征权重系数,加... 针对通道注意力降维时导致细节信息损失和特征融合不充分的问题,提出一种并行池化注意力及多特征融合增强方法。首先,对输入图像使用两种池化模块并行处理,实现特征注意力增强。其中:熵引导池化模块利用通道信息熵生成特征权重系数,加强边缘纹理等细节信息;方向感知池化模块捕获图像在垂直和水平方向上的空间方向信息,再计算通道均值实现逐步降维保留关键特征。其次,多特征融合增强模块利用特征图尺度的对数函数自适应选取卷积核的大小,再将卷积后的特征分组重塑为与输入图像维度相同的通道、高度和宽度方向上的三个特征子图,并进行元素相乘获得增强特征图。最后,增强特征图与输入图像加权融合,同时增强目标的位置和细节信息。实验结果表明,文中方法在参数量不变的情况下,在VOC2007数据集上,mAP@0.5较YOLOX和YOLOv7分别提升4.62%、4.46%,在COCO数据集上,mAP@0.5较YOLOX和YOLOv7分别提升4.57%、4.63%。 展开更多
关键词 通道注意力 并行池化 特征融合增强 自适应 目标检测
在线阅读 下载PDF
融合监督注意力模块和跨阶段特征融合的图像修复改进网络 被引量:2
2
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
在线阅读 下载PDF
基于中心锚困难三元组损失和多视图特征融合的三维模型分类
3
作者 高雪瑶 张澐凯 张春祥 《电子与信息学报》 北大核心 2025年第6期1937-1949,共13页
多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入... 多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入,利用深度残差收缩网络(DRSN)提取视图特征并融合2维形状分布特征D1,D2和D3得到视图融合特征;其次,根据3维模型视图融合特征,通过香农熵来衡量视图分类的不确定性,并将3维模型的多视图按视图显著性由高到低排序;然后,搭建基于注意力-长短期记忆网络(Att-LSTM)的3元组多视图特征融合网络,利用LSTM学习多视图之间的上下文信息,并融入多头注意力机制充分捕捉多视图间的相关信息;最后,引入度量学习并提出了一种新颖的中心锚困难3元组损失(CAH Triplet Loss),并联合交叉熵损失(CE Loss)来优化多视图特征融合网络,减小同类样本、增大异类样本在特征空间上的距离,加强网络对3维模型区分性特征的学习。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到93.83%,分类性能突出。 展开更多
关键词 3模型分类 多视图特征融合 注意力机制 3元组损失
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
4
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
双分支多维注意特征融合的高光谱图像分类 被引量:1
5
作者 马亚美 王双亭 都伟冰 《计算机工程与应用》 CSCD 北大核心 2024年第7期192-203,共12页
为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。DBMD采用两个分支分别进行光谱特征提取和混合特征提取。光谱分支通过密集连接的扩张卷积逐级提取特征,然... 为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。DBMD采用两个分支分别进行光谱特征提取和混合特征提取。光谱分支通过密集连接的扩张卷积逐级提取特征,然后融合低、中、高级语义信息作为特征输出。混合分支采用3D-2D网络架构,并通过改进的Inception块提取空间尺度特征。此外,注意力机制分别应用于光谱、空间和空谱特征,进行特征细化,增强重要区域的特征响应。最后,将不同维度的细化特征联合输入至分类器进行分类。在Indian Pines和Salinas Valley数据集上利用5%和1%的样本进行实验,分别取得了98.40%和99.78%的总体精度,与其他六种网络架构相比,该模型在准确性和稳定性上都具有更优的表现。 展开更多
关键词 混合特征提取 注意力机制 多维特征融合 图像分类
在线阅读 下载PDF
融合双注意力机制的GNN多维时间序列预测 被引量:1
6
作者 范航舟 梅红岩 +2 位作者 赵勤 张兴 程耐 《智能系统学报》 CSCD 北大核心 2024年第5期1277-1286,共10页
针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism... 针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。 展开更多
关键词 多维时序预测 图神经网络 注意力机制 特征融合 时间卷积网络 深度学习 卷积神经网络 时空特征
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:2
7
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
基于多注意力机制与跨特征融合的语义分割算法 被引量:1
8
作者 闵莉 董冰洁 安冬 《计算机工程》 CAS CSCD 北大核心 2024年第8期282-289,共8页
图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的... 图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的图像语义分割算法。该算法选取轻量级网络MobileNetv2作为主干,以缩短训练时间;通过优化空洞空间金字塔池化模块中空洞卷积的膨胀率,改善多尺度语义特征的提取效果,提高模型对小目标的分割能力,并将兼具通道与空间的卷积块注意力机制引入其中,更加关注对分割起决定作用的区域,从而加强对目标边界的提取;在编码器中设计跨特征融合模块,以聚合不同层次特征图的空间信息和语义信息,提高网络学习特征的能力;在编码和解码部分均引入坐标注意力机制,以分解全局平均池化的方式将位置信息嵌入到通道中,从而得到分割目标的准确位置。实验结果表明,所提算法F3crc-DeepLabv3+在PASCAL VOC 2012增强数据集和Cityspaces数据集上的平均交并比分别达到了75.06%和73.06%,平均精度分别达到了84.16%和82.05%,精确率分别达到了86.18%和85.43%,训练时间分别为10 h和13.8 h,具有较优的网络性能。 展开更多
关键词 语义分割 DeepLabv3+网络 MobileNetv2网络 坐标注意力 卷积块注意力模块 特征融合
在线阅读 下载PDF
基于多级特征融合与注意力模块的场景识别方法 被引量:2
9
作者 许华杰 秦远卓 杨洋 《计算机科学》 CSCD 北大核心 2022年第4期209-214,共6页
场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐... 场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐渐消失,从而导致场景识别错误的问题,提出了一种基于多级特征融合与注意力模块的场景识别方法。首先,将深度神经网络ResNet-18的特征提取部分划分出5个分支;然后,将5个分支输出的多级特征进行融合,利用融合后的特征进行场景识别和分类,以弥补丢失的目标信息;最后,在网络中加入改进的注意力模块,以达到着重学习场景图像中关键目标的目的,进一步提升识别效果。在多个场景数据集上进行实验对比,结果表明,所提方法在MIT-67,SUN-397和UIUC-Sports这3个场景数据集上的识别准确率分别达到了88.2%,79.9%和97.7%,相比目前主流的场景识别方法其具有更高的识别准确率。 展开更多
关键词 场景识别 卷积神经网络 特征融合 注意力模块
在线阅读 下载PDF
多维注意力机制与选择性特征融合的图像超分辨率重建 被引量:5
10
作者 温剑 邵剑飞 +3 位作者 刘杰 邵建龙 冯宇航 叶榕 《光学精密工程》 EI CAS CSCD 北大核心 2023年第17期2584-2597,共14页
针对图像超分辨率重建过程中提取低分辨率特征效果较差,大量高频信息丢失导致的边缘模糊和伪影问题,提出了融合多维注意力机制与选择性特征融合作为图像特征提取模块的图像超分辨率重建方法。网络由若干个基本块和残差操作构建模型的特... 针对图像超分辨率重建过程中提取低分辨率特征效果较差,大量高频信息丢失导致的边缘模糊和伪影问题,提出了融合多维注意力机制与选择性特征融合作为图像特征提取模块的图像超分辨率重建方法。网络由若干个基本块和残差操作构建模型的特征提取结构,其核心是一种提取图像特征的异构组卷积块,该模块的对称组卷积块以并行的方式进行卷积提取不同通道间的内部信息特征并进行选择性特征融合,互补卷积块通过全维度动态卷积从空域、输入输出维度和核维度捕捉遗漏的上下文信息,对称组卷积块和互补卷积块连接后的特征采用特征增强残差块去除冗余造成干扰的无用信息。模型通过5种消融实验证明其设计的合理性,在Set5,Set14,BSDS100和Urban100测试集上与其他主流的超分辨率重建方法进行对比,峰值信噪比(PSNR)和结构相似性(SSIM)定量数据均有提升,尤其在放大因子为3的Set5数据集上比次优算法CARN-M均提升0.06 dB,结果表明提出模型具有更优的性能指标和更好的视觉效果。 展开更多
关键词 超分辨率重建 多维注意力机制 特征融合 残差网络
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
11
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
基于特征分治与融合的铁路扣件轻量化实时检测模型
12
作者 鄢化彪 林初欣 +3 位作者 黄绿娥 李东丽 刘词波 徐方奇 《北京交通大学学报》 北大核心 2025年第3期56-67,共12页
为解决嵌入式设备实时处理海量铁路扣件视觉图像数据时无法兼顾精确度与检测速度的问题,提出一种基于特征分治与融合的轻量化实时检测模型.首先,利用基于空间与通道特征的分治混合注意力模块强化模型的特征提取能力,降低图像中复杂背景... 为解决嵌入式设备实时处理海量铁路扣件视觉图像数据时无法兼顾精确度与检测速度的问题,提出一种基于特征分治与融合的轻量化实时检测模型.首先,利用基于空间与通道特征的分治混合注意力模块强化模型的特征提取能力,降低图像中复杂背景对目标的干扰;其次,提出一种二重分治特征融合方法,提升对不同大小目标的检测能力,同时在检测头(YOLO Head)的代价体构建方面,引入可变焦距损失函数(Varifocal Loss,VFL)代替YOLOX-Nano检测头的二值交叉熵损失函数,提高轻量化实时检测的精度;再次,使用随机Alpha-IoU(RAL)损失函数动态调整参数,延缓算法的收敛速度从而优化模型的训练曲线,避免模型训练过程陷入局部最优解;最后,采集10233个检测目标并划分为6种类型,选择YOLOX-Nano、Faster R-CNN及YOLOv8n等主流目标检测模型作为对比进行实验.实验结果表明:所提模型的每秒帧数(Frames Per Second,FPS)为60.24,平均精度(Average Precision,AP)为83.40%,较基线模型提高了3.24%;参数量为2.31 M,较YOLOX-Tiny减少54.08%,浮点数计算量为1.99 G,较YOLOX-Tiny减少69.15%.研究成果可为轻量级实时检测模型与计算系统提供参考. 展开更多
关键词 轻量级嵌入式系统 分治混合注意力模块 分治特征融合 代价体构建
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
13
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
14
作者 张志远 胡冀苏 +3 位作者 张跃跃 钱旭升 周志勇 戴亚康 《上海交通大学学报》 北大核心 2025年第8期1216-1224,共9页
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤... 基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和(91.86±2.18)%,优于经典的单任务分类方法和多任务方法. 展开更多
关键词 前列腺癌盆腔淋巴结转移 多任务学习 多分支各向异性大核注意力模块 多尺度特征交互融合注意力模块 多参数磁共振
在线阅读 下载PDF
基于特征融合与RCB⁃EffcientNet网络的校园安全声检测方法
15
作者 孙凯玮 王玫 +3 位作者 阚瑞祥 刘鑫 仇洪冰 林桂耀 《现代电子技术》 北大核心 2025年第7期79-84,共6页
声音分类技术在校园事件监测中至关重要。然而,声音识别领域存在诸多挑战,如特征提取方法的适配性不足、现有方法难以平衡学习、理解能力与模型复杂度之间的关系等。为解决这些问题,文中提出一种基于LM⁃H声学特征和RCB⁃EfficientNet模... 声音分类技术在校园事件监测中至关重要。然而,声音识别领域存在诸多挑战,如特征提取方法的适配性不足、现有方法难以平衡学习、理解能力与模型复杂度之间的关系等。为解决这些问题,文中提出一种基于LM⁃H声学特征和RCB⁃EfficientNet模型的改进算法。从原始音频中提取Log⁃Mel和Hilbert谱图特征,融合为全新的LM⁃H特征来描述校园异常声,并提出轻量化音频分类模型RCB⁃EfficientNet。通过减少主要模块的堆叠和模型参数量,并添加特征层间的跳跃连接保证信息传递,同时通过替换注意力模块来避免信息丢失。最后,在基于数个公开数据集重组而成的自建数据集上进行实验,改进后的模型参数量为2.69 MB,减少了1.32 MB,总体下降32%,同时实现了98.70%的精度。证实了该改进算法在维持轻量级计算的同时,具有高准确性和稳健性。 展开更多
关键词 声音分类 特征融合 校园异常声 声学特征 轻量化 注意力模块
在线阅读 下载PDF
基于Transformer的全局-局部融合特征的遮挡行人重识别方法
16
作者 汪旭 胡晓光 +1 位作者 付哲宇 赵利欣 《计算机科学与探索》 北大核心 2025年第7期1832-1850,共19页
行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加... 行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加了行人重识别的难度。在目前所提出的大部分遮挡行人重识别方法中,卷积神经网络模型更加关注局部特征,但难以获得全局结构信息,Transformer网络模型建模长距离的特征依赖,但易忽略局部特征细节。为解决这些难题,提出了一种全局-局部融合特征的遮挡行人重识别方法,利用CNN和Transformer特征学习网络的特点,在丰富行人局部特征的同时提升特征的全局表达能力。该模型由三个部分组成:CNN网络主要提取局部细节特征,Transformer分支侧重提取全局特征信息,并通过跨维度多尺度池化融合模块计算上述两个分支特征的相关性,进而实现全局-局部的特征融合;由多层级注意力引导生成的掩码模块能够精准地突出行人图像中的关键特征,自动对齐行人特征信息,抑制遮挡部分或背景噪声的干扰;图像高低频特征增强模块强化被遮挡行人的高低频特征信息,突出有效信息。消融实验以及在相关数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 全局 局部 度多尺度池化融合 多层级注意力 高低频特征
在线阅读 下载PDF
基于CNN-BiLSTM-CBAM的多特征融合恶意PDF文档检测方法
17
作者 王友贺 孙奕 《信息网络安全》 北大核心 2025年第10期1579-1588,共10页
为应对现有恶意PDF文档检测方法忽视特征之间语义关系以及局限于单一类型的特征分析等问题,文章提出一种检测方案,将CNN-BiLSTM-CBAM的模型和多特征融合应用于恶意PDF文档检测中。该方法不仅融合了静态分析中提取的常规信息和结构信息,... 为应对现有恶意PDF文档检测方法忽视特征之间语义关系以及局限于单一类型的特征分析等问题,文章提出一种检测方案,将CNN-BiLSTM-CBAM的模型和多特征融合应用于恶意PDF文档检测中。该方法不仅融合了静态分析中提取的常规信息和结构信息,还结合了动态分析捕获的API序列信息,构建了一个全面多维的特征集。首先,该模型利用卷积神经网络提取特征集中的局部特征;然后,利用双向长短时记忆(BiLSTM)网络捕获特征间的依赖性和上下文语义关系特征,通过卷积块注意力模块(CBAM)为不同特征分配不同的权重,筛选出较具区分性的关键特征;最后,利用Softmax分类器计算检测结果。实验结果表明,与现有方法相比,该模型在准确率、召回率和F1分数等关键性能指标上均展现出显著优势,有效提升了恶意PDF文档的检测性能。 展开更多
关键词 恶意PDF文档检测 特征融合 卷积块注意力模块 双向长短时记忆网络
在线阅读 下载PDF
红外弱光下多特征融合与注意力增强铁路异物检测 被引量:2
18
作者 陈永 王镇 +1 位作者 卢晨涛 张娇娇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1884-1895,共12页
针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上... 针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上,引入自适应特征融合(ASFF)模块,充分利用目标高层语义与底层细粒度特征信息,提升红外目标特征提取能力。通过提出的空洞卷积增强注意力模块(Dilated-CBAM)进行关键特征提取,扩大注意力模块感受野范围,克服了原始CenterNet卷积块感受野映射区域变窄、无法检测弱小目标的问题,提升了无锚框网络的检测精度。使用Smooth L1损失函数进行训练,克服了L1损失函数在网络训练过程收敛速度慢及训练不稳定解的问题。通过铁路红外数据集及现场实验测试,结果表明:所提方法较原始CenterNet模型平均检测精度提高了8.03%,检测框置信度提升了31.23%,平均检测速率是Faster R-CNN模型的9.6倍,所提方法在红外弱光环境下能够更加快速准确地检测出铁路异物,主客观评价均优于对比方法。 展开更多
关键词 机器视觉 红外弱光 异物检测 自适应特征融合 空洞卷积增强注意力模块 无锚框网络
在线阅读 下载PDF
基于组件特征与多注意力融合的车辆重识别方法 被引量:3
19
作者 胡煜 陈小波 +2 位作者 梁军 陈玲 梁书荣 《计算机研究与发展》 EI CSCD 北大核心 2022年第11期2497-2506,共10页
为提升车辆重识别算法的性能,提出一种基于车辆组件特征与多注意力融合的特征学习方法.首先,修改深度残差网络以获取具有丰富语义信息的特征图,同时应用语义分割网络将车辆图像划分为车辆正面、背面、顶面、侧面及背景区域,以实现组件... 为提升车辆重识别算法的性能,提出一种基于车辆组件特征与多注意力融合的特征学习方法.首先,修改深度残差网络以获取具有丰富语义信息的特征图,同时应用语义分割网络将车辆图像划分为车辆正面、背面、顶面、侧面及背景区域,以实现组件特征提取并消除视角变化的影响.然后,设计多注意力融合模块,基于面积注意力与特征注意力实现组件特征的自适应融合.最后,在多任务学习框架下,优化车辆重识别的三元组损失与辅助分类任务的交叉熵与焦点损失,对网络参数进行训练.在多个数据集上的实验结果表明,提出的方法在大多数性能指标上均超越了现有方法.进一步的消融实验证明了多注意力融合模块与多任务损失函数在特征提取上的有效性. 展开更多
关键词 车辆重识别 组件特征抽取 特征对齐 组件注意力模块 注意力融合
在线阅读 下载PDF
融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测 被引量:7
20
作者 李忠飞 冯仕咏 +2 位作者 郭骏 张云鹤 徐飞翔 《工矿自动化》 CSCD 北大核心 2023年第11期151-159,共9页
针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征... 针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征提取网络S-MobileNetV2替换YOLOv4的特征提取网络CSPDarknet53,在减少相关参数量的前提下,有效改善了特征之间的联系;将原有空间金字塔池化结构中的并行连接方式改为串行连接,有效提高了计算效率;对特征融合网络进行改进,引入具有高分辨率、多细节纹理信息的浅层特征,以有效加强对检测目标特征的提取,并将原有Neck结构中的部分卷积修改为深度可分离卷积,在保证检测精度的前提下进一步降低了模型的参数量和计算量。实验结果表明,与YOLOv4模型相比,M-YOLO模型的平均精度均值仅降低了0.84%,但计算量、参数量、模型大小分别减小了74.5%,72.8%,81.6%,检测速度提高了53.4%;相较于其他模型,M-YOLO模型在准确率和实时性方面取得了良好的平衡,满足在智能视频监控终端上嵌入式加载和部署的需求。 展开更多
关键词 目标检测 安全帽佩戴检测 坐标注意力模块 轻量化 多尺度特征融合
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部